Metabolizm
Podstrony: 1 [2] [3] [4] [5] [6] [7]
Metanogeny zwane też tradycyjnie bakteriami metanogennymi, bakteriami metanogenicznymi lub metanobakteriami, mimo że według obecnych klasyfikacji taksonomicznych nie są zaliczane do bakterii, są to archeowce u których głównym produktem oddychania jest metan. W tym typie oddychania beztlenowego energia użyteczna biologicznie jest pozyskiwana podczas przenoszenia elektronów z wodoru na dwutlenek węgla. Metanobakterie są bezwzględnymi anaerobami. Ich metabolizm zachodzi przy temperaturach od 0 do 70 °C, niektóre są w stanie funkcjonować nawet w temperaturze 90 °C, przy wyższych temperaturach giną. Wraz ze wzrostem temperatury wzrasta wydajność metabolizmu. Środowisko bakterii metanogennych musi być beztlenowe, pH neutralne lub lekko alkaliczne i musi zawierać przynajmniej 50% wody. Dlatego najczęściej spotyka się je w: bagnach, na uprawach ryżowych, oborniku, gnojowicy lub w układzie trawiennym przeżuwaczy. Inhibitorem bakterii metanogenicznych są: kwasy organiczne, tlen oraz środki dezynfekcyjne. Zamieszkują również: jelito grube kręgowców i układ trawienny termitów.Miejsce aktywne, centrum aktywne, centrum katalityczne – część cząsteczki, która jest bezpośrednio zaangażowana w reakcji chemicznej. W przypadku prostych cząsteczek, takich jak np. kwasy nieorganiczne w reakcję zaangażowana jest cała cząsteczka. W przypadku dużych i złożonych cząsteczek, takich jak np. enzymy, polimery syntetyczne i niektóre rozbudowane związki metaloorganiczne, tylko niewielka część cząsteczki jest rzeczywiście zaangażowana w reakcję, a jej reszta pozostaje praktycznie bierna.

Metabolizm (z gr. μεταβολή 'zmiana' od μετά 'ponad, poza' i βάλλειν 'rzut') – całokształt reakcji chemicznych i związanych z nimi przemian energii zachodzących w żywych komórkach, stanowiący podstawę wszelkich zjawisk biologicznych. Procesy te pozwalają komórce na wzrost i rozmnażanie, zarządzanie swoją strukturą wewnętrzną oraz odpowiadanie na bodźce zewnętrzne.
Reakcje chemiczne składające się na metabolizm są zorganizowane w szlaki metaboliczne. Są to szeregi reakcji, w których produkty jednej reakcji (nazywane tu metabolitami) są używane jako substraty kolejnej reakcji, a w przekształceniach tych zwykle udział biorą enzymy. Enzymy pozwalają na przeprowadzenie reakcji, które w praktyce nie zaszłyby bez ich udziału, ponieważ byłyby termodynamicznie niekorzystne. Ich działanie polega na obniżaniu energii aktywacji i zwiększaniu szybkości reakcji, sprzęganiu ich z reakcjami spontanicznymi wyzwalającymi energię (korzystnymi termodynamicznie). Enzymy pozwalają na regulację szlaków metabolicznych w odpowiedzi na zmiany warunków wewnątrz komórki lub sygnały pochodzące spoza komórki.
Szlaki metaboliczne można podzielić na dwie duże klasy: przekształcające związki chemiczne z wytworzeniem energii w postaci użytecznej biologicznie oraz wymagające dostarczenia energii, aby mogły zachodzić. Pierwsze z nich, będące reakcjami egzoenergetycznymi, w czasie których następuje przekształcanie związków organicznych w energię, nazywa się reakcjami katabolicznymi lub bardziej ogólnie katabolizmem. Drugie natomiast, będące reakcjami endoenergetycznymi czyli wymagającymi dostarczenia energii, jak tworzenie glukozy, lipidów lub białek, nazywa się reakcjami anabolicznymi lub anabolizmem.
Genetycznie uwarunkowane możliwości metaboliczne danego organizmu decydują o zakwalifikowaniu danej substancji jako „przydatnej” lub „nieprzydatnej” (lub nawet „trującej”), jej użyciu i przetworzeniu. Dla przykładu, niektóre organizmy prokariotyczne (np. bakterie z rodzaju Beggiatoa) używają siarkowodoru jako źródła energii, włączając go w swoje szlaki metaboliczne, podczas gdy m.in. dla zwierząt gaz ten jest trujący (H2S blokuje oksydazę cytochromową). Tempo metabolizmu wpływa natomiast na ilość pożywienia, jaka będzie niezbędna do prawidłowego funkcjonowania danego organizmu.
Szlaki metaboliczne wykazują duże podobieństwo nawet u gatunków o niezwykle dalekim pokrewieństwie. Przykładowo zestaw enzymów, tożsamych w funkcji i niezwykle podobnych w strukturze, biorących udział w cyklu kwasu cytrynowego można znaleźć zarówno u bakterii Escherichia coli, jak i u organizmów wielokomórkowych. Ta uniwersalność szlaków metabolicznych jest prawdopodobnie efektem ich dużej wydajności, a więc istniejącej, dodatniej presji ewolucyjnej do ich podtrzymania, a także wczesnego pojawienia się w ewolucyjnej historii życia.
Podstawowe substancje[ | edytuj kod]

Większość struktur tworzących ciała zwierząt, roślin i innych żywych organizmów zbudowana jest z trzech podstawowych typów związków: aminokwasów, węglowodanów oraz lipidów. Podstawowe związki (np. aminokwasy) mogą łączyć się w polimery kondensacyjne, tworząc wyżej zorganizowane cząsteczki (np. białka). Polimerami kondensacyjnymi są także kwasy nukleinowe, jednak cząsteczki budujące je – nukleotydy składają się z kilku prostszych związków chemicznych. Jako że wymienione podstawowe typy związków są niezbędne dla życia, w procesach anabolicznych organizm zajmuje się ich syntezą podczas budowy swoich komórek oraz – w przypadku pożywienia – katabolicznym rozkładem i wykorzystaniem uwolnionej energii lub ewentualnie pozyskiwaniem prostszych związków na drodze rozkładu bardziej złożonych. Makrocząsteczki te stanowią składnik każdego żywego organizmu. Niektóre z nich przedstawione są w poniższej tabeli.
Aminokwasy i białka[ | edytuj kod]
Białka zbudowane są z aminokwasów, połączonych liniowo wiązaniami peptydowymi. Wiele białek to enzymy katalizujące reakcje chemiczne metabolizmu. Inne pełnią funkcje strukturalne i mechaniczne, na przykład budują cytoszkielet warunkujący kształt komórki. Są również ważnym elementem procesów takich, jak sygnalizacja komórkowa, odpowiedź immunologiczna, adhezja komórkowa, transport aktywny przez błony, cykl komórkowy i wiele innych. Przebieg większości procesów komórkowych regulowany jest przez białka.
Lipidy[ | edytuj kod]
Lipidy to bardzo zróżnicowana grupa substancji biochemicznych. Definiowane są jako hydrofobowe lub amfifilowe cząsteczki o znaczeniu biologicznym, rozpuszczalne w rozpuszczalnikach organicznych (na przykład benzenie czy chloroformie). Lipidy (u eukariota głównie fosfolipidy) budują błony biologiczne oraz są jednym ze związków magazynujących energię. Grupę lipidów stanowiąca związki zapasowe zwyczajowo określa się nazwą tłuszcze, są one zbudowanych z kwasów tłuszczowych oraz glicerolu. Cząsteczka glicerolu może być połączona z trzema cząsteczkami kwasów tłuszczowych. W praktyce istnieje kilka wersji tej podstawowej struktury, zawierających na przykład dodatkowe grupy funkcyjne, takie jak fosforany w fosfolipidach. Inna klasą lipidów, do których należy m.in. cholesterol czy estrogen są steroidy, stanowiące kolejną dużą grupę lipidów produkowanych przez komórkę.
Węglowodany[ | edytuj kod]

Węglowodany to nierozgałęzione ketony lub aldehydy podstawione wieloma grupami hydroksylowymi i występujące w postaci liniowej lub pierścieniowej. Należą do najbardziej rozpowszechnionych substancji organicznych i spełniają w organizmach wiele funkcji, m.in. przechowywania i transportu energii (skrobia i glikogen), budowy struktur komórkowych (celuloza u roślin, chityna u zwierząt). Podstawowe monomery węglowodanowe, takie jak galaktoza, fruktoza i – najpopularniejsza – glukoza nazywane są monosacharydami. Mogą one łączyć się ze sobą na wyjątkowo wiele sposobów, tworząc polisacharydy.
Nukleotydy[ | edytuj kod]
Polimery kondensacyjne zwane DNA i RNA to długie łańcuchy zbudowane z nukleotydów. Cząsteczki te są niezbędne dla przechowywania i wykorzystywania informacji genetycznych, dzięki procesom transkrypcji i biosyntezy białek. Informacje te są chronione przez mechanizmy naprawy DNA i powielane w procesie replikacji. Genom większości organizmów zapisany jest w postaci cząsteczek DNA, jednak niektóre wirusy zwane retrowirusami przechowują informację genetyczną w nici RNA. Przykładem retrowirusa jest wirus HIV, który używa enzymu odwrotnej transkryptazy, aby utworzyć kopię DNA ze swojego genomu RNA. RNA, podobnie jak enzymy, może posiadać właściwości katalityczne i wtedy określa się je jako rybozymy, które wchodzą w skład spliceosomów czy rybosomów. Poszczególne nukleozydy powstają podczas dołączania cukru rybozy do właściwej zasady heterocyklicznej. Zasady te to związki zwane purynami i pirymidynami. W skład nukleotydów budujących RNA wchodzą adenina (A), uracyl (U), cytozyna (C) i guanina (G). W cząsteczkach DNA zamiast uracylu występuje tymina – T. Nukleotydy często pełnią też rolę koenzymów w reakcjach przenoszenia grup funkcyjnych.
Koenzymy[ | edytuj kod]

Metabolizm składa się z reakcji różnego typu, większość z nich jednak można zakwalifikować do kilku podstawowych grup ze względu na rodzaj przenoszonej grupy funkcyjnej. Pozwoliło to komórkom na wykształcenie odpowiednich elementów metabolizmu odpowiedzialnych właśnie za przenoszenie tych grup pomiędzy różnymi związkami. Są one zwane koenzymami. Każdemu rodzajowi reakcji enzymatycznej przyporządkowany jest określony koenzym; w komórce trwa nieprzerwanie proces tworzenia ich, więc po pewnym czasie są one rozkładane i wykorzystywane ponownie przez odpowiednie enzymy.
Przykładowym koenzymem jest adenozyno-5′-trifosforan (ATP), główny nośnik energii chemicznej w komórkach (oprócz niego w pewnych reakcjach zadanie to wypełniają analogiczne nukleotydy: GTP, UTP, CTP). Nukleotyd ten używany jest do przenoszenia energii chemicznej pomiędzy poszczególnymi reakcjami. Komórki zawierają stosunkowo niewielką ilość ATP, ale zapasy tego związku są nieprzerwanie odnawiane, toteż organizm ludzki zużywa w ciągu doby ilość ATP odpowiadającą masie jego ciała. ATP stanowi łącznik pomiędzy katabolizmem i anabolizmem, jako że reakcje kataboliczne generują jego cząsteczki, zaś reakcje anaboliczne rozkładają je do adenozynodifosforanu (ADP). Związek ten pełni także funkcję nośnika reszt fosforanowych w reakcjach fosforylacji.
Witaminy to związki organiczne potrzebne organizmowi do prawidłowego funkcjonowania, jednak niemożliwe do wytworzenia w komórkach. U człowieka większość witamin funkcjonuje jako zmodyfikowane koenzymy; dla przykładu, wszystkie witaminy rozpuszczalne w wodzie występują w komórkach w postaci ufosforylowanej lub są połączone z nukleotydami. Dinukleotyd nikotynoamidoadeninowy (NADH), pochodna witaminy B3 (niacyny), jest ważnym koenzymem pełniącym funkcję akceptora wodoru. Setki różnych typów dehydrogenaz odbierają elektrony substratom reakcji (utleniają i redukują NAD do NADH. Ta zredukowana postać koenzymu staje się następnie substratem przy tworzeniu różnych reduktaz, enzymów zajmujących się redukcją związków chemicznych. Dinukleotyd nikotynoamidoadeninowy występuje w komórce w dwóch powiązanych ze sobą formach, NADH i NADPH. Formy NAD/NADH są częściej wykorzystywane w reakcjach katabolicznych, podczas gdy NADP/NADPH mają duże znaczenie dla przebiegu reakcji anabolicznych.
Związki nieorganiczne i kofaktory[ | edytuj kod]

Na około 99% masy przeciętnego ssaka składa się dziewięć pierwiastków: węgiel, wodór, tlen, azot, siarka, wapń, chlor, sód i potas. Związki organiczne (białka, lipidy i węglowodany) skupiają większość węgla i azotu, podczas gdy największa część tlenu i wodoru zawarta jest w wodzie. Wapń, chlor, sód i potas oraz pozostałe pierwiastki występujące w organizmach żywych są z kolei głównymi komponentami nieorganicznych związków chemicznych, z których cześć występuje w dużej ilości, natomiast inne potrzebne są w ilościach śladowych.
U większości organizmów główną część występujących w nich związków nieorganicznych stanowią jonowe elektrolity, takie jak jony sodu, potasu, wapnia, magnezu, chlorki, fosforany oraz wodorowęglany. Dokładne wartości stężeń poszczególnych jonów regulują mechanizmy ciśnienia osmotycznego i pH. Związki nieorganiczne stanowią główny składnik struktur takich jak szkielet i muszle u tych organizmów, które je posiadają. Jony są również niezbędne do prawidłowego funkcjonowania komórek nerwowych i mięśni, jako że potencjał czynnościowy, pobudzający je do działania, powstaje podczas wymiany elektrolitów pomiędzy płynem pozakomórkowym a cytozolem. Elektrolity dostają się do komórek i wydostają z nich poprzez kanały tworzone przez białka błony komórkowej zwane kanałami jonowymi. Przykładowo napięcie mięśniowe zależne jest od przepływu jonów wapnia, sodu i potasu przez owe kanały i tubule T (wpuklenia w błonie komórkowej włókien mięśniowych przyspieszające rozprzestrzenianie się impulsów elektrycznych).
Metale przejściowe występują w organizmach w ilościach śladowych, z których najbardziej rozpowszechnione to cynk i żelazo. Metale te są składnikami niektórych białek i kofaktorów, są również niezbędne dla funkcjonowania takich enzymów jak katalaza oraz białek transportujących tlen, na przykład hemoglobiny. Kofaktory te związane są trwale z jednym typem białka, mimo że kofaktory enzymów mogą podczas katalizy ulegać modyfikacjom, po przeprowadzeniu reakcji zawsze wracają do postaci pierwotnej. Metale będące mikroelementami są przenoszone do komórek organizmu za pomocą specyficznych przenośników i wiązane z białkami przechowującymi je, np. ferrytyną czy metalotioneiną.
Katabolizm[ | edytuj kod]
Katabolizm stanowi grupa reakcji chemicznych, w których następuje rozkład lub utlenianie złożonych związków organicznych do związków prostszych z uwolnieniem energii. Ich wspólnym celem jest dostarczenie energii lub substratów niezbędnych do podtrzymania procesów życiowych organizmu. Szczegółowy charakter tych procesów jest różny dla poszczególnych grup organizmów. Jednak wszystkie te formy metabolizmu mają na celu utworzenie potencjału redoks pozwalającego na przenoszenie elektronów pomiędzy zredukowanymi cząstkami (takimi jak np. materia organiczna, amoniak, siarkowodór, jony żelaza) a akceptorami (na przykład tlenem, azotanami i siarczanami). W metabolizmie zwierząt reakcje te prowadzą do rozkładu cząstek organicznych do prostych związków, najczęściej dwutlenku węgla i wody, z uwolnieniem energii.
Najpowszechniejszy schemat reakcji katabolicznych w organizmach zwierząt można podzielić na trzy główne etapy. Podczas pierwszego z nich duże cząsteczki substancji organicznych – białek, polisacharydów czy lipidów są trawione w układzie pokarmowym do mniejszych cząsteczek. Następnie są one transportowane do komórek i rozkładane do jeszcze prostszych związków (najczęściej acetylo-CoA), podczas czego uwalniana jest energia. Wreszcie grupa acetylowa utleniana jest do dwutlenku węgla w cyklu Krebsa podczas którego energia przenoszona jest na NADH i GTP. Powstały NADH ulega utlenieniu w łańcuchu oddechowym, wyzwalając energię przechowywaną ostatecznie w ATP. Na tym etapie protony z NADH przenoszone są na tlen co prowadzi do wytworzenia drugiego produktu pełnego utlenienia związków organicznych – wody.
Trawienie[ | edytuj kod]
Makrocząsteczki takie jak skrobia, celuloza czy białka nie mogą być bezpośrednio wchłonięte przez komórki, muszą więc zostać wcześniej rozłożone do mniejszych cząsteczek. Głównymi grupami enzymów trawiennych są: proteazy rozkładające białka na aminokwasy, glukozydazy depolimeryzujące polisacharydy czy lipazy rozkładające lipidy do kwasów tłuszczowych. Mikroorganizmy wydzielają enzymy trawienne do swojego otoczenia, podczas gdy zwierzęta produkują je w odpowiednio wyspecjalizowanych komórkach w przewodzie pokarmowym. Aminokwasy i cukry uwolnione przez te pozakomórkowe enzymy są następnie transportowane do wnętrza komórek za pomocą specjalnych białek w procesie transportu aktywnego.
Katabolizm związków organicznych[ | edytuj kod]
Wspólną cechą szlaków katabolicznych jest rozkładanie związków organicznych do mniejszych cząsteczek, w wyniku czego uwolniona zostaje energia w formie użytecznej dla komórki. Powstające małe cząsteczki chemiczne mogą być wykorzystane w komórce lub wydalane z niej. Katabolizm węglowodanów polega głównie na rozkładaniu ich na mniejsze cząsteczki. Są one transportowane do komórek wkrótce po rozłożeniu do monosacharydów. Kolejnym etapem katabolicznego szlaku glukozy jest glikoliza, podczas której, z cukrów takich jak glukoza czy fruktoza powstaje kwas pirogronowy oraz energia wiązana w ATP. Kwas pirogronowy jest elementem występującym w kilku szlakach metabolicznych, jednak zdecydowana większość jego cząsteczek jest przekształcana w acetylo-CoA i włączana w cykl kwasu cytrynowego. Mimo że podczas samego cyklu powstaje również kilka cząsteczek ATP, jego najważniejszym produktem jest NADH powstałe z NAD w chwili utleniania acetylo-CoA. Produktami końcowymi procesu utlenienia glukozy są cząsteczki CO2, H2O oraz energia. Alternatywną drogą rozkładu glukozy jest szlak pentozofosforanowy, podczas którego następuje redukcja koenzymu NADPH i produkcja cukrów z grupy pentoz takich jak ryboza – cukrowy komponent kwasu nukleinowego.
W warunkach beztlenowych pirogronian redukowany jest do kwasu mlekowego za pomocą enzymu dehydrogenazy mleczanowej, utleniającej ponownie NADH do NAD, który może być ponownie użyty w glikolizie. Drugim sposobem odtworzenia NAD jest dekarboksylacja pirogronianu do aldehydu octowego, a następnie jego redukcja do etanolu przez dehydrogenazę alkoholową. Oba procesy nazywane są fermentacjami. W świecie mikroorganizmów zachodzi wiele innych fermentacji, poza opisanymi powyżej.
Katabolizm tłuszczów odbywa się poprzez proces hydrolizy, podczas którego uwalniane są kwasy tłuszczowe i glicerol. Glicerol przechodzi glikolizę, zaś kwasy tłuszczowe rozpadają się podczas beta-oksydacji z wytworzeniem acetylo-CoA, wchodzącego następnie w cykl kwasu cytrynowego. Utlenianie grama kwasów tłuszczowych wyzwala więcej energii niż utlenianie tej samej ilości glukozy, ponieważ węglowodany zawierają w swych strukturach więcej tlenu.
Aminokwasy mogą być użyte jako materiał do budowania białek i innych cząsteczek, lub też – po utlenieniu do mocznika, wody i dwutlenku węgla – jako źródło energii. Proces oksydacji zaczyna się od usunięcia grupy aminowej podczas transaminacji. Wchodzi ona w cykl ornitynowy, pozostawiając szkielet węglowy w postaci ketokwasu. Niektóre z tych kwasów pełnią później różne role w cyklu kwasu cytrynowego, na przykład deaminują glutaminian – kwas α-ketoglutarowy. Aminokwasy glukogenne mogą również przekształcić się w glukozę w procesie glukoneogenezy (patrz poniżej).
Podstrony: 1 [2] [3] [4] [5] [6] [7]