• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Mechanika kwantowa



    Podstrony: 1 [2] [3] [4] [5]
    Przeczytaj także...
    Zasada najmniejszego działania – sformułowana przez Pierre Louis Maupertuisa zasada mówiąca, że w fizyce klasycznej (porównaj: fizyka kwantowa) fizycznie realizowane tory cząstek minimalizują pewien funkcjonał zwany działaniemTeorie pól kwantowych (ang. QFT – Quantum Field Theory) – współczesne teorie fizyczne tłumaczące oddziaływania podstawowe. Są one rozwinięciem mechaniki kwantowej zapewniającym jej zgodność ze szczególną teorią względności.
    Max Planck – wprowadzenie do fizyki pojęcia kwantu energii, sformułowanie wzoru
    Albert Einstein – objaśnienie zjawiska fotoelektrycznego.
    Niels Bohr – pierwszy kwantowy model atomu.
    Louis de Broglie – koncepcja fal materii.
    Erwin Schrödinger – sformułowanie równania, stanowiącgo podstawę mechaniki kwantowej i chemii kwantowej.

    Mechanika kwantowa (teoria kwantów) – teoria praw ruchu obiektów poszerzająca zakres mechaniki na sytuacje, dla których przewidywania mechaniki klasycznej nie sprawdzały się. Opisuje przede wszystkim świat mikroskopowy – obiekty o bardzo małych masach i rozmiarach, np. atom, cząstki elementarne itp., ale także takie zjawiska makroskopowe jak nadprzewodnictwo i nadciekłość. Jej granicą dla średnich rozmiarów, energii czy pędów zwykle jest mechanika klasyczna.

    Mechanika klasyczna – dział mechaniki w fizyce opisujący ruch ciał (kinematyka), wpływ oddziaływań na ruch ciał (dynamika) oraz badaniem równowagi ciał materialnych (statyka). Mechanika klasyczna oparta jest na prawach ruchu (zasadach dynamiki) sformułowanych przez Isaaca Newtona, dlatego też jest ona nazywana „mechaniką Newtona” (Principia). Mechanika klasyczna wyjaśnia poprawnie zachowanie się większości ciał w naszym otoczeniu.Szczególna teoria względności (STW) – teoria fizyczna stworzona przez Alberta Einsteina w 1905 roku. Zmieniła ona sposób pojmowania czasu i przestrzeni opisane wcześniej w newtonowskiej mechanice klasycznej. Teoria pozwoliła usunąć trudności interpretacyjne i sprzeczności pojawiające się na styku mechaniki (zwanej obecnie klasyczną) i elektromagnetyzmu po ogłoszeniu przez Jamesa Clerka Maxwella teorii elektromagnetyzmu.

    Dla zjawisk zachodzących w mikroświecie konieczne jest stosowanie mechaniki kwantowej, gdyż mechanika klasyczna nie daje poprawnego opisu tych zjawisk. Jest to jednak teoria znacznie bardziej złożona matematycznie i pojęciowo.

    Zasady mechaniki kwantowej są obecnie paradygmatem fizyki i chemii. Nierelatywistyczna mechanika kwantowa pozostaje słuszna, dopóki stosuje się ją w odniesieniu do ciał poruszających się z prędkościami dużo mniejszymi od prędkości światła. Jej uogólnieniem próbowała być relatywistyczna mechanika kwantowa, ale ostatecznie okazało się, że takie uogólnienie musi mieć postać kwantowej teorii pola.

    Louis Victor Pierre Raymond de Broglie (ur. 15 sierpnia 1892 w Dieppe, zm. 19 marca 1987 w Louveciennes) – francuski fizyk, laureat Nagrody Nobla w 1929 za odkrycie falowej natury elektronów.Atom – podstawowy składnik materii. Składa się z małego dodatnio naładowanego jądra o dużej gęstości i otaczającej go chmury elektronowej o ujemnym ładunku elektrycznym.

    Mechanika kwantowa została stworzona niezależnie przez Wernera Heisenberga i Erwina Schrödingera w 1925 r. Została szybko rozwinięta dzięki pracom Maxa Borna i Paula Diraca. Jeszcze przed powstaniem ostatecznej wersji mechaniki kwantowej prekursorskie prace teoretyczne stworzyli Albert Einstein i Niels Bohr. Jej wersję obejmującą teorię pól kwantowych doprowadzili do ostatecznej formy Richard Feynman i inni.

    Teoria – z gr. theoría- oglądanie, rozważanie. System pojęć, definicji, aksjomatów i twierdzeń ustalających relacje między tymi pojęciami i aksjomatami, tworzący spójny system pojęciowy opisujący jakąś wybraną fizyczną lub abstrakcyjną dziedzinę.Nazwą magnetyzm określa się zespół zjawisk fizycznych związanych z polem magnetycznym, które może być wytwarzane zarówno przez prąd elektryczny jak i przez materiały magnetyczne.

    Spis treści

  • 1 Historia
  • 2 Mechanika klasyczna a mechanika kwantowa
  • 3 Sformułowanie matematyczne
  • 4 Zjawiska opisywane przez mechanikę kwantową
  • 5 Konsekwencje filozoficzne
  • 6 Zobacz też
  • 7 Uwagi
  • 8 Bibliografia
  • 9 Linki zewnętrzne
  • Historia[]

    Pod koniec XIX w. fizykę uważano za najbardziej kompletną ze wszystkich nauk ścisłych (patrz historia fizyki). Istniało jedynie kilka słabo zbadanych problemów, których rozwiązanie spodziewano się wkrótce otrzymać, jakkolwiek nie przypuszczano, by te rezultaty miały znaczący wpływ na fizyczny obraz świata. Bardzo niewielu ludzi zdawało sobie sprawę z wagi nierozwiązanych problemów, do których w szczególności należał problem objaśnienia zjawiska promieniowania termicznego ciała doskonale czarnego. Bliższe badania promieniowania ciała doskonale czarnego, zjawiska fotoelektrycznego, a także zjawiska Comptona sprawiły, że całkowicie zmieniło się nasze postrzeganie świata.

    Kwantowy oscylator harmoniczny – układ fizyczny rozmiarów atomowych lub subatomowych (np. jon w sieci krystalicznej lub w cząsteczka gazu) wykonujący ruch drgający (oscylacyjny) pod wpływem siły proporcjonalnej do wychylenia od położenia równowagi. Właściwy opis ruchu wymaga zastosowania mechaniki kwantowej, co sprowadza się do znalezienia rozwiązań równania Schrödingera. Dowodem eksperymentalnym konieczności zastosowania mechaniki kwantowej do opisu właściwości mikroskopowych układów drgających jest np. nieciągłe widmo promieniowania emitowane przez drgające cząsteczki. Makroskopowym odpowiednikiem oscylatora kwantowego jest klasyczny oscylator harmoniczny, którym jest ciało makroskopowe o stosunkowo dużej masie, zawieszone np. na sprężynie i wykonujące drgania; do opisu jego ruchu wystarczająca jest mechanika klasyczna. Pojęcie oscylatora ma duże zastosowanie i znaczenie w wielu działach fizyki klasycznej i kwantowej.Przestrzeń Hilberta – w analizie funkcjonalnej rzeczywista lub zespolona przestrzeń unitarna (tj. przestrzeń liniowa nad ciałem liczb rzeczywistych lub zespolonych z abstrakcyjnym iloczynem skalarnym), zupełna ze względu na indukowaną (poprzez normę) z iloczynu skalarnego tej przestrzeni metrykę. Jako unormowana i zupełna, każda przestrzeń Hilberta jest przestrzenią Banacha, a przez to przestrzenią Frécheta, a stąd lokalnie wypukłą przestrzenią liniowo-topologiczną. Przestrzenie te noszą nazwisko Davida Hilberta, który wprowadził je pod koniec XIX wieku; są one podstawowym narzędziem wykorzystywanym w wielu dziedzinach fizyki, m.in. w mechanice kwantowej (np. przestrzeń Foka nad przestrzenią Hilberta).
  • Pionierem fizyki kwantowej stał się Max Planck. W 1900 r, po latach prób wyjaśnienia zjawiska promieniowania termicznego ciał na gruncie klasycznej fizyki przyjął – wbrew teorii Maxwella – że energie fal elektromagnetycznych emitowanych przez ciała są skokowe (skwantowane). Podobnie, jeżeli ciało absorbuje fale elektromagnetyczne, to absorbuje skokowe wartości energii. Przyjął ponadto, że wielkości kwantów energii są proporcjonalne do częstotliwości fali , a następnie wyznaczył stałą proporcjonalności (nazwaną później stałą Plancka) żądając zgodność teorii z wynikami pomiarów promieniowania termicznego.
  • W 1905 r. Albert Einstein wyjaśnił zjawisko fotoelektryczne zakładając, że wiązka promieniowania monochromatycznego niesie dyskretne porcje energii o wartościach podanych przez Plancka i w takich porcjach jest absorbowana w trakcie oddziaływania z materią. Było to odważnym rozszerzeniem koncepcji kwantów Plancka. (Konieczność przyjęcia kwantyzacji promieniowania elektromagnetycznego niezależnie od tego, czy oddziałuje z materią czy porusza się swobodnie w przestrzeni, znalazło pełne uzasadnienie dopiero wraz z rozwojem tzw. kwantowej teorii pola.)
  • W 1913 r. Niels Bohr wyjaśnił skwantowanie poziomów energetycznych w atomie wodoru. Zapostulował w tym celu istnienie nieznanego wcześniej prawa, pozwalającego na zajmowanie przez elektrony w atomie wodoru tylko określonych poziomów energetycznych. Koncepcja ta rozwiązywała paradoksy wynikające z wcześniejszych prac doświadczalnych Rutherforda, które wskazywały na skupienie całej masy atomu w jego jądrze, co było głosem za tzw. planetarnym modelem budowy atomu. Nierozwiązanym problemem pozostawało jednak pytanie o stabilność atomu. Skoro bowiem elektrony miały krążyć wokół jądra, to powinny wypromieniowywać energię w sposób ciągły i w końcu spaść na jądro atomowe. Bohr był pierwszym uczonym, który zapostulował, że nie jest możliwe stworzenie stabilnego modelu atomu w ramach fizyki klasycznej i zaproponował zestaw zasad heurystycznych, pozwalających wyjaśnić stabilność materii i stworzyć nowy dział fizyki: fizykę kwantów.
  • W 1922 Compton pokazał korpuskularny charakter fotonu (zjawisko Comptona). Światło zachowuje się jak zbiór korpuskuł (corpus łac. – ciało) o energii i pędzie.
  • W 1924 Louis de Broglie tworzy teorię fal materii, w ramach której koncepcje Bohra uzyskują naturalną interpretację: stany stabilne elektronów w modelu planetarnym Bohra odpowiadają elektronowym falom stojącym. Zagadką pozostaje, w jaki sposób pogodzić wyniki prac Comptona, w których elektrony traktowane są jako cząstka.
  • Stworzona w 1925 roku mechanika macierzowa Heisenberga daje przewidywania zgodne z doświadczeniem, zaś jej podstawy koncepcyjne pozwalają żywić nadzieję na możliwość rozwoju matematycznie i koncepcyjnie spójnej teorii kwantowej.
  • W 1926 r. została opublikowana nowa teoria tzw. mechanika falowa (Erwin Schrödinger). Narasta problem, który z opisów – opis Schrödingera czy może Heisenberga – realizowany w mechanice macierzowej jest tym poprawnym. Udaje się w końcu udowodnić równoważność obydwu opisów.
  • Odkrycie ugięcia elektronów na kryształach (doświadczenia C. J. Davissona, L. H. Germera oraz G. P. Thomsona z 1927 roku) wykazały falowy charakter elektronów, które do tej pory traktowano jako korpuskuły.
  • W 1927 r. Werner Heisenberg sformułował zasadę nieoznaczoności. Bohr sformułował kopenhaską interpretację mechaniki kwantowej, utrzymaną w duchu pozytywizmu.
  • W 1927, Paul Dirac zunifikował mechanikę kwantową ze szczególną teorią względności. Wprowadził notację stanów bra-ket (stan kwantowy ) mechaniki kwantowej.
  • W 1932, John von Neumann sformułował w sposób matematycznie rygorystyczny mechanikę kwantową. Teoria w ujęciu von Neumanna posługuje się ścisłym i abstrakcyjnym językiem przestrzeni funkcyjnych, przestrzeni Hilberta, operatorów i algebry abstrakcyjnej. Interpretacja teorii kwantów Neumanna wymaga włączenia do jej schematu pojęciowego świadomego obserwatora.
  • Poczynając od 1927 większe wysiłki poczyniono, by stosować mechanikę kwantową do pól fizycznych niż pojedynczych cząstek. Wczesne prace autorów takich jak Paul Dirac, Wolfgang Pauli, Victor Weisskopf i Jordan doprowadziły do sformułowania elektrodynamiki kwantowej przez Feynmana, Dysona, Schwingera i Tomonagę w latach 40. ubiegłego wieku.
  • Wektory i wartości własne – wielkości opisujące endomorfizm danej przestrzeni liniowej; wektor własny przekształcenia można rozumieć jako wektor, którego kierunek nie ulega zmianie po przekształceniu go endomorfizmem; wartość własna odpowiadająca temu wektorowi to skala podobieństwa tych wektorów.Pojęcie liczby kwantowej pojawiło się w fizyce wraz z odkryciem mechaniki kwantowej. Okazało się, że właściwie wszystkie wielkości fizyczne mierzone w mikroświecie atomów i cząsteczek podlegają zjawisku kwantowania, tzn. mogą przyjmować tylko pewne ściśle określone wartości. Na przykład elektrony w atomie znajdują się na ściśle określonych orbitach i mogą znajdować się tylko tam, z dokładnością określoną przez zasadę nieoznaczoności. Z drugiej strony każdej orbicie odpowiada pewna energia. Bliższe badania pokazały, że w podobny sposób zachowują się także inne wielkości np. pęd, moment pędu czy moment magnetyczny (kwantowaniu podlega tu nie tylko wartość, ale i położenie wektora w przestrzeni albo jego rzutu na wybraną oś). Wobec takiego stanu rzeczy naturalnym pomysłem było po prostu ponumerowanie wszystkich możliwych wartości np. energii czy momentu pędu. Te numery to właśnie liczby kwantowe.


    Podstrony: 1 [2] [3] [4] [5]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Niels Henrik David Bohr (ur. 7 października 1885 w Kopenhadze, zm. 18 listopada 1962 tamże) – duński fizyk, laureat Nagrody Nobla w dziedzinie fizyki w 1922 za opracowanie badania struktury atomu.
    John von Neumann (ur. 28 grudnia 1903 w Budapeszcie, zm. 8 lutego 1957 w Waszyngtonie) – węgierski matematyk, inżynier chemik, fizyk i informatyk, pracujący głównie w Stanach Zjednoczonych. Wniósł znaczący wkład do wielu dziedzin matematyki – w szczególności był głównym twórcą teorii gier, teorii automatów komórkowych (w które pewien początkowy wkład miał także Stanisław Ulam) i stworzył formalizm matematyczny mechaniki kwantowej. Uczestniczył w projekcie Manhattan. Przyczynił się do rozwoju numerycznych prognoz pogody.
    Algebra ogólna – obiekt matematyczny będący przedmiotem badań algebry uniwersalnej. Czasami algebra uniwersalna nazywana jest algebrą ogólną, wówczas rozważane w niej obiekty nazywa się zwykle algebrami abstrakcyjnymi lub po prostu algebrami.
    Wodór (H, łac. hydrogenium) – pierwiastek chemiczny o liczbie atomowej 1, niemetal z bloku s układu okresowego. Jego izotop, prot, jest najprostszym możliwym atomem, zbudowanym z jednego protonu i jednego elektronu.
    Częstotliwość (częstość) – wielkość fizyczna określająca liczbę cykli zjawiska okresowego występujących w jednostce czasu. W układzie SI jednostką częstotliwości jest herc (Hz). Częstotliwość 1 herca odpowiada występowaniu jednego zdarzenia (cyklu) w ciągu 1 sekundy. Najczęściej rozważa się częstotliwość w ruchu obrotowym, częstotliwość drgań, napięcia, fali.
    Astrofizyka – dziedzina nauki leżąca na pograniczu fizyki i astronomii, zajmująca się badaniem procesów fizycznych w skali astronomicznej oraz budową i prawami rządzącymi obiektami astronomicznymi. Tematem badań astrofizyki są procesy fizyczne we Wszechświecie dotyczące takich obiektów jak gwiazdy, galaktyki, materia międzygwiezdna oraz ich wzajemne oddziaływanie.
    Cząstka (korpuskuła) – w tradycyjnym znaczeniu, to każdy fragment materii, który ma kształt mniej lub bardziej zbliżony do sfery i jest na tyle mały, że nie można go zobaczyć gołym okiem. W tym określeniu informacja o kształcie nie dotyczy cząstek elementarnych (zob. fizyka cząstek elementarnych), w przypadku których nie ma żadnego sensu mówić o ich kształcie, gdyż ich "zachowanie" trudno jest sobie wyobrażać w kategoriach makroskopowych wyobrażeń zmysłowych.

    Reklama