• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Mechanika klasyczna



    Podstrony: 1 [2] [3]
    Przeczytaj także...
    Cząsteczka (molekuła) – neutralna elektrycznie grupa dwóch lub więcej atomów utrzymywanych razem kowalencyjnym wiązaniem chemicznym. Cząsteczki różnią się od cząstek (np. jonów) brakiem ładunku elektrycznego. Jednakże, w fizyce kwantowej, chemii organicznej i biochemii pojęcie cząsteczka jest zwyczajowo używane do określania jonów wieloatomowych.Galaktyka (z gr. γαλα – mleko) – duży, grawitacyjnie związany układ gwiazd, pyłu i gazu międzygwiazdowego oraz niewidocznej ciemnej materii. Typowa galaktyka zawiera od 10do 10 gwiazd orbitujących wokół wspólnego środka masy.

    Mechanika klasyczna – dział mechaniki opisujący ruch ciał (kinematyka), wpływ oddziaływań na ruch ciał (dynamika) oraz badanie równowagi ciał materialnych (statyka). Mechanika klasyczna oparta jest na prawach ruchu (zasadach dynamiki) sformułowanych przez Isaaca Newtona, dlatego też jest ona nazywana „mechaniką Newtona” (Principia). Mechanika klasyczna wyjaśnia poprawnie zachowanie się większości ciał w naszym otoczeniu.

    Szczególna teoria względności (STW) – teoria fizyczna stworzona przez Alberta Einsteina w 1905 roku. Zmieniła ona sposób pojmowania czasu i przestrzeni opisane wcześniej w newtonowskiej mechanice klasycznej. Teoria pozwoliła usunąć trudności interpretacyjne i sprzeczności pojawiające się na styku mechaniki (zwanej obecnie klasyczną) i elektromagnetyzmu po ogłoszeniu przez Jamesa Clerka Maxwella teorii elektromagnetyzmu.Atom – podstawowy składnik materii. Składa się z małego dodatnio naładowanego jądra o dużej gęstości i otaczającej go chmury elektronowej o ujemnym ładunku elektrycznym.

    Do końca XIX wieku była uznawana za teorię dokładną, na początku XX wieku okazała się niepoprawna w niektórych sytuacjach. W celu wyjaśnienia niezgodności powstały nowe działy mechaniki:

  • mechanika relatywistyczna wraz z jej teoriami – ogólną teorią względności i szczególną teorią względności, opisujące zachowanie się obiektów poruszających się z prędkością porównywalną z prędkością światła w próżni,
  • mechanika kwantowa, opisująca zachowanie się mikroskopijnych obiektów (cząsteczki, atomy, cząstki elementarne).
  • Wymienione teorie w pewnym sensie obalają mechanikę klasyczną, choć są zbudowane na jej bazie pojęciowej i ją uzupełniają. Mimo to mechanika klasyczna jest nadal bardzo użyteczna, ponieważ:

    Zasada zachowania energii – empiryczne prawo fizyki, stwierdzające, że w układzie izolowanym suma wszystkich rodzajów energii układu jest stała (nie zmienia się w czasie). W konsekwencji, energia w układzie izolowanym nie może być ani utworzona, ani zniszczona, może jedynie zmienić się forma energii. Tak np. podczas spalania wodoru w tlenie energia chemiczna zmienia się w energię cieplną.Chaos deterministyczny - w matematyce i fizyce, własność równań lub układów równań, polegająca na dużej wrażliwości rozwiązań na dowolnie małe zaburzenie parametrów. Dotyczy to zwykle nieliniowych równań różniczkowych i różnicowych, opisujących układy dynamiczne.
  • jest prostsza w stosowaniu niż inne teorie,
  • z pewnymi przybliżeniami może być stosowana w szerokim zakresie,
  • stanowi podstawę pojęciową dla innych teorii.
  • Mechanika klasyczna może być używana do opisu ruchu zarówno obiektów rozmiaru makroskopowych (np. piłka, samochód), w tym obiektów astronomicznych (np. planety, galaktyki), jak i obiektów mikroskopijnej wielkości (np. cząsteczek organicznych, a nawet – w dużym przybliżeniu i w ograniczonym zakresie – do cząstek elementarnych). Przykładowo: równanie ruchu elektronu, wynikające z mechaniki klasycznej, poprawnie opisuje działanie mikroskopu elektronowego; dopiero do wyjaśnienia ograniczeń rozdzielczości tego mikroskopu potrzeba odwołania do mechaniki kwantowej, a wyjaśnienie działania mikroskopu elektronowego z użyciem samych pojęć mechaniki kwantowej byłoby trudne.

    Mechanika kwantowa (teoria kwantów) – teoria praw ruchu obiektów świata mikroskopowego. Poszerza zakres mechaniki na odległości czasoprzestrzenne i energie, dla których przewidywania mechaniki klasycznej nie sprawdzały się. Opisuje przede wszystkim obiekty o bardzo małych masach i rozmiarach - np. atom, cząstki elementarne itp. Jej granicą dla średnich rozmiarów lub średnich energii czy pędów jest mechanika klasyczna.Matematyczne zasady filozofii naturalnej (łac. Philosophiae naturalis principia mathematica – dzieło Isaaca Newtona, w którym przedstawił prawo powszechnego ciążenia, a także prawa ruchu leżące u podstaw mechaniki klasycznej. Newton wyprowadził prawa Keplera dla ruchu planet (sformułowane na podstawie obserwacji astronomicznych).

    W ostatnich latach wzrastającym zainteresowaniem cieszy się dział mechaniki klasycznej o nazwie dynamika nieliniowa. Kluczowym pojęciem jest tu chaos, a głównym narzędziem – nieliniowe równania różniczkowe i iteracyjne.

    Podsumowanie[ | edytuj kod]

    Chociaż mechanika klasyczna jest z grubsza zgodna z innymi „klasycznymi” teoriami, takimi jak klasyczna elektrodynamika i termodynamika, to pewne sprzeczności odkryte pod koniec XIX wieku są wyjaśniane przez współczesną fizykę. Przykładowo klasyczna elektrodynamika mówi, że prędkość światła w próżni jest stała dla wszystkich obserwatorów – jest to sprzeczne z mechaniką klasyczną, w wyniku czego powstała szczególna teoria względności.

    Statyka – drugi po kinetyce dział dynamiki (będącej działem mechaniki), zajmujący się równowagą układów sił działających na ciało pozostające w spoczynku lub poruszające się ruchem jednostajnym i prostoliniowym. W przeciwieństwie do kinetyki, statyka zajmuje się zrównoważonymi układami, w których nie powstają siły bezwładności.Tarcie (pojęcie fizyczne, jeden z oporów ruchu) to całość zjawisk fizycznych towarzyszących przemieszczaniu się względem siebie dwóch ciał fizycznych (tarcie zewnętrzne) lub elementów tego samego ciała (tarcie wewnętrzne) i powodujących rozpraszanie energii podczas ruchu.

    W mechanice klasycznej można wydzielić poddziedziny:

  • kinematyka – opisująca ruch jako zagadnienie geometryczne,
  • statyka – zajmująca się ciałami nie poruszającymi się i warunkami pozostania ciał w spoczynku (równowadze),
  • dynamika – opisująca ruch ciał oraz zmiany ruchu ciał pod wpływem oddziaływań.


  • Podstrony: 1 [2] [3]




    Warto wiedzieć że... beta

    Gradient – w analizie matematycznej, a dokładniej rachunku wektorowym, pole wektorowe wskazujące kierunki najszybszych wzrostów wartości danego pola skalarnego w poszczególnych punktach, przy czym moduł (długość) każdej wartości wektorowej jest równy szybkości wzrostu. Wektor przeciwny do gradientu nazywa się często antygradientem.
    Nawias Poissona – pojęcie z dziedziny fizyki matematycznej, głównie mechaniki klasycznej, a konkretniej mechaniki Hamiltona. Występuje m.in. w kanonicznych równaniach Hamiltona, które opisują ewolucję w czasie układu fizycznego. Nawias Poissona to działanie dwuargumentowe na zbiorze wielkości fizycznych.
    Układ odniesienia (fizyka) – punkt lub układ punktów w przestrzeni, względem którego określa się położenie lub zmianę położenia (ruch) danego ciała. Wybrany punkt często wskazuje się poprzez wskazanie ciała, z którym związany jest układ współrzędnych.
    <|||||||||| |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| - |||||||||| |||||||||| ||||||||||>,
    Energia gr. ενεργεια (energeia) – skalarna wielkość fizyczna charakteryzująca stan układu fizycznego (materii) jako jego zdolność do wykonania pracy.
    William Rowan Hamilton (ur. 4 sierpnia 1805 w Dublinie, zm. 2 września 1865) – matematyk, astronom i fizyk irlandzki.
    Ogólna teoria względności (OTW) – popularna nazwa teorii grawitacji formułowanej przez Alberta Einsteina w latach 1907–1915, a opublikowanej w roku 1916.

    Reklama

    Czas generowania strony: 0.027 sek.