• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Logarytm



    Podstrony: 1 [2] [3] [4] [5]
    Przeczytaj także...
    Teoria złożoności obliczeniowej – dział teorii obliczeń, którego głównym celem jest określanie ilości zasobów potrzebnych do rozwiązania problemów obliczeniowych. Rozważanymi zasobami są takie wielkości jak czas, pamięć lub liczba procesorów.Henry Briggs (luty 1561 - 26 stycznia 1630) - angielski matematyk i astronom, w latach 1596-1620 profesor geometrii w Gesham College w Londynie, a w latach 1619-1630 - profesor matematyki i astronomii na uniwersytecie w Oxfordzie. W 1614 wprowadził logarytmy dziesiętne. Autor wielocyfrowych tablic logarytmów i funkcji trygonometrycznych, a także tablic astronomicznych.
    Wykresy logarytmów. Czerwony przy podstawie e, zielony przy podstawie 10, purpurowy przy podstawie 1,7

    Logarytm (łac. [now.] logarithmus, w sensie stosunek, z gr. λόγ- log-, od λόγος logos , „słowo”, w sensie proporcja, i ἀριθμός árithmós, „liczba”). Logarytm przy podstawie z liczby (symbolicznie ) oznacza liczbę , będącą potęgą, do której podstawa musi być podniesiona, aby dać liczbę , czyli

    Liczba przeciwna do danej liczby a , {displaystyle a,;} to taka liczba − a , {displaystyle -a,;} że zachodzi:Microsoft Excel (pełna nazwa Microsoft Office Excel) - arkusz kalkulacyjny produkowany przez firmę Microsoft dla systemów Windows i MacOS. Pierwsza wersja programu przeznaczona dla Windows trafiła na rynek w roku 1987 i stała się przebojem. Postępujący sukces rynkowy programu sprawił, że w roku 1993 programy pakietu Microsoft Office zostały przeprojektowane tak, by przypominać wyglądem arkusz Excel. Od wersji 5 wydanej w 1993 program zawiera wbudowany język Visual Basic. Od wersji 4.0 dostępny w wersji polskiej.

    przy czym oraz Przykładowo gdyż

    Język grecki, greka (starogr. dialekt attycki Ἑλληνικὴ γλῶττα, Hellenikè glõtta; nowogr. Ελληνική γλώσσα, Ellinikí glóssa lub Ελληνικά, Elliniká) – język indoeuropejski z grupy helleńskiej, w starożytności ważny język basenu Morza Śródziemnego. W cywilizacji Zachodu zaadaptowany obok łaciny jako język terminologii naukowej, wywarł wpływ na wszystkie współczesne języki europejskie, a także część pozaeuropejskich i starożytnych. Od X wieku p.n.e. zapisywany jest alfabetem greckim. Obecnie, jako język nowogrecki, pełni funkcję języka urzędowego w Grecji i Cyprze. Jest też jednym z języków oficjalnych Unii Europejskiej. Po grecku mówi współcześnie około 15 milionów ludzi. Język grecki jest jedynym językiem z helleńskich naturalnych, który nie wymarł.Asymptotyczne tempo wzrostu jest miarą określającą zachowanie wartości funkcji wraz ze wzrostem jej argumentów. Stosowane jest szczególnie często w teorii obliczeń, w celu opisu złożoności obliczeniowej, czyli zależności ilości potrzebnych zasobów (np. czasu lub pamięci) od rozmiaru danych wejściowych algorytmu. Asymptotyczne tempo wzrostu opisuje jak szybko dana funkcja rośnie lub maleje, abstrahując od konkretnej postaci tych zmian.

    Kluczową własnością logarytmów jest fakt, iż służą one zamianie często czasochłonnego mnożenia na dużo prostsze dodawanie.

    Spis treści

  • 1 Logarytm naturalny
  • 2 Logarytm dziesiętny
  • 3 Własności
  • 4 Liczby zespolone
  • 5 Funkcja logarytmiczna
  • 6 Kologarytm
  • 7 Logarytm dyskretny
  • 8 Zastosowania
  • 9 Zobacz też
  • 10 Przypisy
  • Logarytm naturalny[]

    Dzieło Logarithmorum canonis descriptio Johna Napiera z 1620 roku, w którym podpisuje się on nazwiskiem „Neper”.

    Logarytm naturalny, nazywany często logarytmem Nepera, to logarytm o podstawie oznaczanej literą równą w przybliżeniu Zwyczajowo zamiast pisze się Wybór za podstawę tej szczególnej liczby podyktowany jest definicją funkcji wykładniczej dla której postaci

    Logarytm dyskretny elementu b {displaystyle b} przy podstawie a {displaystyle a} w danej grupie skończonej – liczba całkowita c {displaystyle c} , dla której zachodzi równość (w notacji multiplikatywnej):Liczby całkowite – liczby naturalne dodatnie N + = { 1 , 2 , 3 , … } {displaystyle mathbb {N} _{+}={1,2,3,dots }} oraz liczby przeciwne do nich { − 1 , − 2 , − 3 , … } {displaystyle {-1,-2,-3,dots }} , a także liczba zero. Uogólnieniem liczb całkowitych są liczby wymierne i tym samym liczby rzeczywiste, szczególnym przypadkiem liczb całkowitych są: liczby naturalne.
    ,

    wtedy jej pochodna (również formalna) co oznacza, że zamiast ponieważ W pewnym sensie logarytm naturalny jest więc rzeczywiście bardziej „naturalny” spośród logarytmów. Podstawa logarytmu naturalnego jest liczbą przestępną i jedną z najważniejszych stałych matematycznych.

    Logarytm binarny (dwójkowy) to logarytm o podstawie 2. Jest oznaczany na ogół symbolem log 2 ⁡ x {displaystyle log _{2}{x}} .Pochodna formalna – operacja na elementach pierścieni wielomianów lub pierścieni szeregów formalnych naśladująca własności pochodnej funkcji znanej z analizy matematycznej. Pochodna formalna ułatwia badanie pierwiastków wielomianu: są one wielokrotne, jeśli są zarazem pierwiastkami pochodnej wielomianu.


    Podstrony: 1 [2] [3] [4] [5]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Podstawa logarytmu naturalnego, liczba e, liczba Eulera, liczba Nepera – stała matematyczna wykorzystywana w wielu dziedzinach matematyki i fizyki. W przybliżeniu wynosi 2,7182818, oznacza się ją literą e.
    Stosunek – ilorazowe odniesienie jednej wartości do drugiej. Zapisywany jest często w postaci ułamka lub przy użyciu znaku dzielenia.
    Suwak logarytmiczny (suwak rachunkowy) – prosty przyrząd ułatwiający obliczenia, powszechnie używany przez inżynierów do końca lat 80. XX wieku. Wynaleziony w 1632 roku przez Williama Oughtreda, zainspirowany linijką logarytmiczną Edmunda Guntera.
    Liczba przestępna – liczba rzeczywista lub ogólniej zespolona z {displaystyle z,} , która nie jest pierwiastkiem żadnego niezerowego wielomianu jednej zmiennej o współczynnikach wymiernych, tzn. z {displaystyle z,} jest liczbą przestępną, gdy:
    Neper (oznaczenie Np) - bezwymiarowa logarytmiczna jednostka miary wielkości ilorazowych, stosowana w elektrotechnice i akustyce, nazwana na cześć Johna Napiera (1550-1617), którego zlatynizowane nazwisko brzmiało "Neper".
    Bogdan Miś (ur. 24 grudnia 1936 w Warszawie) – z wykształcenia matematyk, z zawodu dziennikarz i popularyzator nauki.
    Mnożenie – działanie dwuargumentowe będące jednym z czterech podstawowych działań arytmetycznych. Mnożone elementy to czynniki (określane również jako mnożna i mnożnik), a jego wynik to iloczyn. Może być ono traktowane jako zapis wielokrotnego dodawania elementu do siebie.

    Reklama

    Czas generowania strony: 0.064 sek.