Lit
Podstrony: 1 [2] [3] [4] [5]
Rozszczepienie jądra atomowego to przemiana jądrowa polegająca na rozpadzie jądra na dwa (rzadziej na więcej) fragmenty o zbliżonych masach. Zjawisku towarzyszy emisja neutronów, a także kwantów gamma, które unoszą znaczne ilości energii. Ponieważ jądra ulegające rozszczepieniu zwykle są jądrami ciężkimi, które posiadają więcej neutronów niż protonów, obydwa fragmenty powstałe w rozszczepieniu są jądrami neutrono-nadmiarowymi. Nadmiar neutronów jest z nich emitowany podczas aktu rozszczepienia (neutrony natychmiastowe) lub z pewnym opóźnieniem (neutrony opóźnione).Promieniowanie gamma – wysokoenergetyczna forma promieniowania elektromagnetycznego. Za promieniowanie gamma uznaje się promieniowanie o energii kwantu większej od 50 keV. Zakres ten częściowo pokrywa się z zakresem promieniowania rentgenowskiego. W wielu publikacjach rozróżnienie promieniowania gamma oraz promieniowania X (rentgenowskiego) opiera się na ich źródłach, a nie na długości fali. Promieniowanie gamma wytwarzane jest w wyniku przemian jądrowych albo zderzeń jąder lub cząstek subatomowych, a promieniowanie rentgenowskie – w wyniku zderzeń elektronów z elektronami powłok wewnętrznych lub ich rozpraszaniu w polu jąder atomu. Promieniowanie gamma jest promieniowaniem jonizującym i przenikliwym. Promieniowania gamma oznacza się grecką literą γ, analogicznie do korpuskularnego promieniowania alfa (α) i beta (β).
Lit (Li, z gr. λίθος lithos ‛skała’) – pierwiastek chemiczny o liczbie atomowej 3. W czystej postaci jest miękkim, srebrnobiałym metalem. Należy do grupy metali alkalicznych (litowców). W warunkach standardowych jest najlżejszym metalem i pierwiastkiem o najniższej gęstości w fazie stałej. Jak wszystkie pierwiastki grupy I jest wysoce reaktywny i palny. W związku z tym najczęściej przechowuje się go w olejach mineralnych, ewentualnie w atmosferze gazów obojętnych (w przypadku litu są to gazy szlachetne – najczęściej argon lub hel). Po przecięciu lit ma metaliczny połysk, ale kontakt z wilgotnym powietrzem prowadzi do korozji, zmieniającej powierzchnię na srebrnoszarą, matową, a następnie, wraz z postępem korozji, na całkowicie czarną lub z licznymi czarnymi plamami.
Z powodu wysokiej reaktywności lit nie występuje w naturze w stanie wolnym, a jedynie w postaci związków, które zwykle mają budowę jonową. Występuje w wielu pegmatytach oraz wodzie morskiej, gdyż kation litowy (Li+
) jest dobrze rozpuszczalny. Najczęściej otrzymuje się go z solanek i glin. Przemysłowo lit uzyskuje się poprzez wydzielanie za pomocą elektrolizy z mieszaniny chlorku litu i chlorku potasu.
Jądro litu jest na granicy stabilności, ponieważ oba stabilne izotopy występujące w przyrodzie mają jedne z najniższych energii wiązań jądra atomowego (na nukleon) ze wszystkich stabilnych jąder atomowych. Względnie mała stabilność powoduje, że lit występuje rzadziej w Układzie Słonecznym od 25 z pierwszych 32 pierwiastków układu okresowego, pomimo małej masy atomowej. Z podobnych powodów lit jest ważnym pierwiastkiem w fizyce jądrowej. Przemiana jąder litu w jądra helu w 1932 roku była pierwszą w pełni dokonaną przez człowieka reakcją jądrową, a wodorek litu 7
Li2
H służy jako paliwo jądrowe w kontrolowanych syntezach termojądrowych.
Lit i jego związki mają wiele różnorakich zastosowań przemysłowych, w tym w produkcji szkła i ceramiki żaroodpornej, wytrzymałych stopów używanych w lotnictwie, ogniw litowych i akumulatorów litowo-jonowych. Te trzy zastosowania zużywają ponad połowę światowej produkcji litu.
Choć śladowe ilości litu są obecne we wszystkich organizmach, nie ma on wyraźnej funkcji biologicznej. Zwierzęta i rośliny mogą żyć bez niego w zdrowiu. Jednak pobocznych funkcji litu w organizmach nie wykluczono. Kation litu Li+
podawany w postaci jednej z soli jest używany jako stabilizator nastroju w leczeniu choroby afektywnej dwubiegunowej.
Właściwości[ | edytuj kod]
Atomowe i fizyczne[ | edytuj kod]
Jak inne litowce, lit posiada pojedynczy elektron walencyjny, który łatwo jest oddzielany, prowadząc do powstania kationu (niska energia wiązania elektronu). W konsekwencji metaliczny lit jest dobrym przewodnikiem ciepła i elektryczności, a także jest wysoce reaktywny, chociaż najmniej spośród litowców. Niższa od pozostałych litowców reaktywność chemiczna wynika z małej odległości między jądrem atomu a elektronem walencyjnym (mały promień atomu) (pozostałe dwa elektrony są na orbitalu 1s i mają znacznie niższą energię, przez co nie uczestniczą w tworzeniu wiązań chemicznych).
Lit metaliczny jest tak miękki, że można go kroić nożem. Po przecięciu ma srebrzysto-biały kolor, który szybko szarzeje wskutek utleniania (tworzą się tlenki, a w obecności wilgotnego powietrza także wodorotlenki i tlenowodorotlenki). Mimo że lit charakteryzuje się jedną z najniższych temperatur topnienia spośród metali (180 °C), ma najwyższą temperaturę topnienia i wrzenia ze wszystkich litowców.
Jest najlżejszym metalem w układzie okresowym, w przybliżeniu 0,534 g/cm³. Unosi się na powierzchni wody, a nawet nafty, podobnie jak sód i potas. Kołek z litu będzie miał podobną wagę jak kołek zrobiony ze średniej twardości drewna, np. sosny. Lit unosi się na wodzie, lecz wchodzi z nią w gwałtowną reakcję.
Lit jest najlżejszym pierwiastkiem (o najmniejszej gęstości), który w temperaturze pokojowej nie jest gazem. Drugim w kolejności jest potas, którego gęstość jest o 60% większa od gęstości litu (0,862 g/cm³). Ponadto oprócz helu i wodoru, jest najlżejszym pierwiastkiem w stałym i ciekłym stanie skupienia, mając 2/3 gęstości ciekłego azotu (0,808 g/cm³).
Współczynnik rozszerzalności cieplnej litu jest dwa razy większy od aluminium i prawie cztery razy większy niż żelaza. Jego pojemność cieplna jest najwyższa ze wszystkich pierwiastków stałych. Przy normalnym ciśnieniu lit jest nadprzewodnikiem w temperaturze poniżej 400 μK, przy wyższych temperaturach (powyżej 9 K) staje się nim dla ciśnienia rzędu 20 GPa lub wyższego. W temperaturach poniżej 70 K, lit, podobnie jak sód, ulega przemianie martenzytycznej. W temperaturze 4,2 K przyjmuje romboedryczny układ krystalograficzny (z powtarzalnością co 9 warstw); w wyższych temperaturach układ zmienia się w regularny ściennie centrowany (fcc), a jeszcze wyższych w układ regularny przestrzennie centrowany (bcc). W temperaturze ciekłego helu (4 K) struktura romboedryczna występuje najczęściej. Pod wysokim ciśnieniem zaobserwowano wiele form alotropowych litu.
Charakterystyka[ | edytuj kod]
Lit łatwo reaguje z wodą, lecz zauważalnie mniej żywiołowo niż pozostałe litowce. W reakcji tej wydziela się wodór i powstaje wodny roztwór wodorotlenku litu. Wodorotlenek litu jest słabszą zasadą niż wodorotlenek sodu. Z powodu łatwości reakcji z wodą (także z wilgocią z powietrza), lit jest zwykle przechowywany pod warstwą węglowodorów, najczęściej parafiny. Chociaż cięższe litowce mogą być przechowywane w gęstszych substancjach (np. w olejach mineralnych), lit nie jest wystarczająco gęsty, by się w nich w pełni zanurzyć. W wilgotnym powietrzu gwałtownie ciemnieje w wyniku pokrycia powierzchni czarnym wodorotlenkiem litu (LiOH i LiOH·H
2O), azotkiem litu (Li
3N) i węglanem litu (Li
2CO
3), który tworzy się we wtórnych reakcjach LiOH i dwutlenku węgla (CO
2).

Związki litu zabarwiają płomień na intensywny karminowy (czerwono-wiśniowy) kolor, natomiast gdy są palne, płomień staje się oślepiająco biały. Lit może się zapalić w atmosferze tlenu gdy zostanie wystawiony na działanie wody lub pary wodnej. Lit jest palny i jest potencjalnie wybuchowy w przypadku wystawienia na działanie powietrza a zwłaszcza wody. Reakcja litu z wodą w temperaturze pokojowej jest intensywna, ale nie gwałtowna a wodór wytworzony w jej wyniku samoczynnie nie powinien się zapalić (póki woda lub jej para nie przegrzeje się miejscowo do temperatury zapłonu wodoru). Jak w przypadku wszystkich litowców, pożar litu jest wyjątkowo trudny do ugaszenia i wymaga do tego użycia gaśnic proszkowych (grupy D). Lit jest jedynym metalem, który reaguje z azotem w warunkach normalnych.
Lit ma zbliżone właściwości do magnezu, pierwiastka o podobnym promieniu atomowym i jonowym. Podobieństwa chemiczne między tymi dwoma metalami obejmują tworzenie azotku w reakcji z N
2. Oba także tworzą tlenek (Li
2O) i nadtlenek litu (Li
2O
2) w wyniku spalania w O
2, sole o podobnej rozpuszczalności, oraz węglany i azotki o małej stabilności termicznej. Podobnie jak berylowce fosforan, węglan i fluorek litu są słabiej rozpuszczalne w wodzie (w stosunku do innych litowców). Podobnie jak inne pierwiastki I grupy, lit reaguje z wodorem w wysokich temperaturach, dając wodorek litu (LiH). Kationy Li+
należą do V grupy kationów.
Inne znane związki dwuskładnikowe litu to halogenki (LiF, LiCl, LiBr, LiI), siarczek (Li
2S), ponadtlenek (LiO
2) i węglik (Li
2C
2). Znanych jest również wiele nieorganicznych związków, w których lit łączy się z różnymi anionami tworząc sole: boran (Li
2BO
3), amidek (LiNH
2), węglan (Li
2CO
3), azotan (LiNO
3), glinowodorek (LiAlH
4), czy borowodorki (np. LiBH
4). Sole litu w większości są dobrze rozpuszczalne w wodzie, a także stosunkowo dobrą (w porównaniu z solami innych litowców) rozpuszczalnością w rozpuszczalnikach organicznych. Poznano też wiele związków litoorganicznych, w których istnieje bezpośrednie wiązanie kowalencyjne między węglem a litem (sole karboanionów). Te ostatnie są bardzo mocnymi zasadami i nukleofilami. W wielu z tych litoorganicznych związków kationy litowe agregują do klastrów o wysokiej symetrii, co jest dość typowe dla kationów litowców. LiHe, słabo oddziałujący związek van der Waalsa, został zidentyfikowany w bardzo niskich temperaturach.
Izotopy[ | edytuj kod]
Lit występujący w przyrodzie składa się z dwóch stabilnych izotopów: 6
Li i 7
Li. Ten drugi występuje znacznie częściej (92,5% zawartości procentowej tego izotopu w naturalnie występującym pierwiastku). Oba naturalnie występujące izotopy mają wyjątkowo niską energię wiązań jądra. Oznacza to, że lit, jako jedyny spośród stabilnych pierwiastków lekkich, może produkować energię poprzez rozszczepienie jądra atomowego. Jądra litu-6 i litu-7 mają niższe energie wiązania jądra niż jakikolwiek inne stabilne jądro z wyjątkiem deuteru i helu-3. W wyniku tego lit, chociaż ma bardzo małą masę atomową, jest mniej rozpowszechniony w układzie słonecznym niż 25 z pierwszych 32 pierwiastków chemicznych.
Jak dotąd zostało zbadanych siedem izotopów promieniotwórczych, spośród których najbardziej stabilnymi są izotopy 8
Li z czasem połowicznego rozpadu równym 838 ms i 9
Li ze średnim czasem życia równym 178 ms. Pozostałe izotopy promieniotwórcze mają czas połowicznego rozpadu krótszy niż 8,6 ms. Najmniej trwały izotop litu to 4
Li, który rozpada się poprzez emisję protonu i ma średni czas życia równy 7,6×10 s.
7
Li jest jednym z pierwiastków pierwotnych wytworzonych w wyniku nukleosyntezy w czasie Wielkiego Wybuchu. W niewielkich ilościach zarówno 6
Li, jak i 7
Li wytwarzane są w gwiazdach, aczkolwiek uważa się, że są zużywane w podobnym tempie jak powstają. Dodatkowe nieduże ilości litu obu stabilnych izotopów (6
Li i 7
Li) mogą pochodzić z wiatru słonecznego, w wyniku oddziaływania promieniowania kosmicznego z cięższymi atomami, a także z rozpadu promieniotwórczego izotopów 7
Be i 10
Be we wczesnym okresie istnienia układu słonecznego. 7
Li może również powstawać w gwiazdach węglowych.
Izotopy litu rozdzielają się w wyniku różnych procesów naturalnych, takich jak: tworzenie minerałów (strącanie), metabolizm i wymiana jonowa. Jony litu zastępują magnez i żelazo w pozycji oktaedrycznej w minerałach ilastych, w których izotop 6
Li jest preferowany w stosunku do 7
Li. Rezultatem jest wzbogacanie zawartości lżejszego izotopu w procesach hiperfiltracji i przeobrażenia skał. Rzadko występujący 11
Li ma halo jądrowe (promień jądra jest większy niż jego teoretycznie wyliczona wartość z modelu kroplowego). W procesie laserowej separacji izotopów z atomów w fazie gazowej (ang. Atomic Vapor Laser Isotope Sepration – AVLIS) można dokonać rozdzielenia izotopów litu.
Występowanie[ | edytuj kod]

We wszechświecie[ | edytuj kod]
Zgodnie ze współczesną teorią kosmologiczną lit, w postaci obu stabilnych izotopów (lit-6 i lit-7), był wśród trzech pierwiastków utworzonych w wyniku Wielkiego Wybuchu. Chociaż ilość utworzonego litu w wyniku pierwotnej nukleosyntezy zależy od ilości fotonów na barion, to dla powszechnie uznawanej wartości można obliczyć występowanie litu po Wielkim Wybuchu i dla tak uzyskanych wartości istnieje „kosmologiczny niedobór litu” we wszechświecie: starsze gwiazdy zawierają mniej litu niż powinny a niektóre młodsze gwiazdy mają go jeszcze mniej. Ta teoretycznie zbyt mała ilość litu w starszych gwiazdach najprawdopodobniej wynika z „wmieszania” się litu do wnętrza gwiazd, gdzie ulega on zniszczeniu. Ponadto lit jest produkowany w młodych gwiazdach. Ponieważ przekształca się on w dwa atomy helu w wyniku zderzenia atomu litu z protonem w temperaturach powyżej 2,4 miliona stopni (a większość gwiazd utrzymuje co najmniej taką temperaturę w swoim wnętrzu), lit jest rzadziej występującym pierwiastkiem niż jest to przewidywane teoretycznie dla gwiazd późniejszej generacji, z powodów jeszcze nie do końca wyjaśnionych.
Chociaż powstał jako jeden z trzech pierwszych pierwiastków (wraz z helem i wodorem) w czasie Wielkiego Wybuchu, lit (podobnie jak beryl i bor) występuje wyraźnie rzadziej od pierwiastków sąsiednich w układzie pierwiastkowym. Jest to wynik niskich temperatur, które wystarczają do rozpadu litu i brak często występujących zjawisk powodujących jego tworzenie.
Lit występuje również w brązowych karłach i w pewnych rodzajach pomarańczowych gwiazd. Ponieważ jest obecny w chłodniejszych brązowych karłach o mniejszej masie a ulega zniszczeniu w gorętszych czerwonych karłach, jego występowanie w widmach spektroskopowych gwiazd może być używane jako „test litu” do rozróżniania tych dwóch typów gwiazd, jako że oba są mniejsze niż słońce. Niektóre pomarańczowe gwiazdy również mają wysokie stężenie litu. Takie gwiazdy (np. Centaurus X-4) okrążają masywne obiekty takie jak gwiazdy neutronowe lub czarne dziury, których grawitacja najwyraźniej wyciąga cięższy lit na powierzchnię wodorowo-helowej gwiazdy powodując, że jest lepiej widoczny w widmie.
Na Ziemi[ | edytuj kod]
Chociaż lit jest dość szeroko rozprzestrzeniony na Ziemi, nie występuje w formie czystego pierwiastka z powodu dużej reaktywności. Całkowita zawartość litu w wodzie słonej (mórz i oceanów) jest szacowana na 230 miliardów ton. Pierwiastek występuje we względnie stałym stężeniu we wszystkich słonych wodach – od 0,14 do 0,25 części na milion (ppm). Wyższe stężenia – ok. 7 ppm – spotykane są w pobliżu źródeł geotermalnych.
Szacunki zawartości litu w płaszczu ziemskim to masowo od 20 do 70 ppm. W górnych warstwach Ziemi występuje w ilości 0,0018%, w postaci izotopu 7
Li z dodatkiem 3,75–7,5% 6
Li. Zgodnie z łacińskim znaczeniem swojej nazwy, lit występuje w skałach magmowych a osiąga największe stężenie w granitach. Pegmatyty zawierają największą ilość minerałów zawierających lit, w tym spodumen i petalit, które są głównymi potencjalnymi źródłami komercyjnego pozyskiwania litu. Innym ważnym minerałem zawierającym lit jest lepidolit. Jednym z niedawno odkrytych źródeł jest występujący w glinach hektoryt, który jak na razie wydobywany jest przemysłowo tylko przez jedną firmę (amerykańską Western Lithium Corporation). Innymi minerałami, w których również występuje lit są ambligonit i tryfilin. Przy stężeniu w płaszczu ziemskim na poziomie 20 mg/kg, lit znajduje się na 25. miejscu najczęściej występujących pierwiastków. Nikiel i ołów występują na Ziemi w podobnych ilościach.
Lit jest względnie rzadko występującym pierwiastkiem, który wprawdzie można znaleźć w wielu skałach i solankach, ale zwykle w małym stężeniu. Tylko nieliczne z nich stanowią potencjalną wartość jako przemysłowe źródła litu. Większość jest, albo zbyt małym złożem, albo zawiera zbyt małe stężenie litu.
Jedną z największych rezerw litu zawiera obszar Salar de Uyuni w Boliwii, którego zasoby szacuje się na 5,4 miliona ton litu. United States Geological Survey ocenia, że w 2010 Chile posiadało największe rezerwy (7,5 miliona ton) i ma największą roczną produkcję litu (8800 ton). Inni główni producenci litu to Australia, Argentyna i Chiny. Inne szacunki określają rezerwy litu w Chile na poziomie 7,52 miliona ton, a Argentyny na poziomie 6 milionów ton.
W czerwcu 2010, „New York Times” podał, że amerykańscy geolodzy wykonywali badania solnisk w zachodnim Afganistanie, gdzie najprawdopodobniej znajdują się duże zasoby litu. „Przedstawiciele Pentagonu poinformowali, że wstępna analiza pomiarów ze stanowiska geologicznego w prowincji Ghazni sugeruje występowanie dużych złóż litu zbliżonych wielkością do złóż boliwijskich (obecnie uznawanych za największe zasoby litu na świecie).” Te szacunki opierają się „na starych danych, zbieranych głównie przez Związek Radziecki w czasie okupacji Afganistanu w latach 1979–1989”. Natomiast Stephen Peters, szef działu USGS ds. minerałów w Afganistanie (ang. USGS Afghanistan Minerals Project), powiedział, że nic nie wie o zaangażowaniu USGS w jakimkolwiek nowym poszukiwaniu minerałów w Afganistanie w ostatnich dwóch latach: „Nie wiemy nic o jakimkolwiek odkryciu zasobów litu”.
Biologiczne[ | edytuj kod]
Lit występuje w śladowych ilościach w wielu roślinach, planktonie i bezkręgowcach, w stężeniu od 69 do 5760 części na miliard (ppb). Stężenie litu w organizmach bezkręgowców jest nieco mniejsze, natomiast wszystkie tkanki i płyny ustrojowe kręgowców zawierają jakąś ilość litu (w zakresie od 21 do 763 ppb). Organizmy wodne dokonują bioakumulacji litu w większym stopniu niż lądowe. Nie wiadomo, czy lit pełni rolę fizjologiczną w jakimkolwiek organizmie, ale badania żywieniowe ssaków wskazują na jego duże znaczenie dla zdrowia. Sugeruje się, że lit powinien być klasyfikowany jako niezbędny do życia mikroelement z zalecaną dawką spożycia na poziomie 1 mg/dzień. Badania w Japonii przeprowadzone w 2011 roku wskazują na to, że występujący w wodzie w naturalnych stężeniach lit może zwiększać średnią długość życia ludzi. W innym badaniu japońskim w 2009 roku wskazano na odwrotnie proporcjonalną zależność liczby samobójstw i stężenia litu w wodzie pitnej w danym rejonie.
Podstrony: 1 [2] [3] [4] [5]