• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Liczby naturalne



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Moc zbioru – własność zbioru, która opisuje jego liczebność. Nieformalnie, moc zbioru jest tym większa im większy jest zbiór. Pojęcie mocy zbioru opiera się na pojęciu równoliczności dwóch zbiorów – zbiory A i B są równoliczne, gdy każdy element zbioru A można połączyć w parę z dokładnie jednym elementem zbioru B, innymi słowy istnieje bijekcja (funkcja różnowartościowa i "na") między zbiorami A i B. Zbiory równoliczne mają tę samą moc. Moce zbiorów są konkretnymi obiektami matematycznymi, nazywanymi liczbami kardynalnymi.Cywilizacja Majów – rozwinięta cywilizacja rolnicza i miejska, stworzona w czasach prekolumbijskich na obszarach Mezoameryki przez ludy z grupy językowej Majów.

    Liczby naturalneliczby służące podawaniu liczności (trzy osoby, zob. liczebnik główny/kardynalny) i ustalania kolejności (trzecia osoba, zob. liczebnik porządkowy), poddane w matematyce dalszym uogólnieniom (odpowiednio: liczby kardynalne, liczby porządkowe). Badaniem własności liczb naturalnych zajmują się arytmetyka i teoria liczb. W matematyce określenie liczby naturalne oznacza na ogół liczby całkowite dodatnie.

    Liczba algebraiczna to liczba rzeczywista (ogólniej zespolona), która jest pierwiastkiem pewnego niezerowego wielomianu o współczynnikach wymiernych (a więc i całkowitych).Pitagoras (gr. Πυθαγόρας, Pythagoras) (ur. ok. 572 p.n.e. na Samos lub w Sydonie, zm. ok. 497 p.n.e. w Metaponcie) – grecki matematyk, filozof, mistyk kojarzony ze słynnym twierdzeniem matematycznym nazwanym jego imieniem. Z relacji anonimowego autora wiadomo, że Pitagoras żył 104 lata", ale większość opisów wzmiankuje jedynie około 80 lat. Według jednej z wersji zmarł w Metaponcie w domu zapaśnika Milona, ocalony z pogromu Krotony, zaś innej - rewolty tej nie przeżył. Według wielu źródeł jego żoną była Teano.

    To, czy zero jest liczbą naturalną, jest kwestią umowy. W matematyce nie przyjęto ogólnie żadnej konwencji dotyczącej przynależności zera lub jej braku do liczb naturalnych. Interesujące, że z punktu widzenia matematyki obie definicje można uważać w gruncie rzeczy za równoważne. O konkretnym stanowisku decydują często takie sytuacje jak: uproszczenie zapisu pewnych symboli, ograniczenie przypadków szczególnych itp.

    Eudoksos z Knidos gr. Εὔδοξος ὁ Κνίδιος Eudoksos ho Knidios (ur. ok. 408 p.n.e. w Knidos, zm. ok. 355 p.n.e. tamże) – grecki astronom, matematyk, filozof i geograf pochodzący z Karii (dzisiejsza Azja Mniejsza).Hieroglify (stgr. ἱερογλυφικά hieroglyphika, dosł. święte znaki) – najwcześniejszy rodzaj pisma starożytnego Egiptu, obok pisma hieratycznego i demotycznego. Nazwa wywodzi się (podobnie jak nazwa władcy – faraona) z greki i oznacza święte znaki. Ponieważ Hellenowie nie mogli ich zrozumieć, nie przypuszczali że służą do pisania.

    Historia[ | edytuj kod]

    Pierwsze systematyczne, abstrakcyjne studia nad liczbami przypisuje się starożytnym Grekom: Pitagorasowi, Euklidesowi i Archimedesowi. Poza Grecją niezależne rozważania prowadzono w rejonie Indii, Chin i Ameryki Środkowej.

    Aksjomat nieskończoności – jeden z aksjomatów teorii mnogości. Mówi, że istnieje zbiór X {displaystyle X;} spełniający dwa następujące warunki:Egipt (arab. مصر Miṣr; dialekt egipski: Máṣr (/masˤɾ/); łac. Aegyptus, gr. Αίγυπτος Aígyptos), nazwa oficjalna Arabska Republika Egiptu (arab. جمهوريّة مصر العربيّة Dżumhurijjat Misr Al-Arabijja) – państwo położone w północno-wschodniej Afryce z półwyspem Synaj w zachodniej Azji. Egipt graniczy z Izraelem i Strefą Gazy na północnym wschodzie, Sudanem na południu i Libią na zachodzie. Od północy rozpościera się Morze Śródziemne, a na wschodzie Morze Czerwone.

    Pierwszym krokiem do wyabstrahowania liczb naturalnych było stworzenie sposobu ich zapisu. W Babilonii stosowano na przykład cyfry o wartościach od 1 do 10, gdzie o wartości liczby decydowała pozycja kolejnych cyfr w szeregu. W starożytnym Egipcie stosowano odpowiednie hieroglify o wartościach 1, 10 i kolejnych potęgach 10, aż do miliona.

    Leopold Kronecker (ur. 7 grudnia 1823 w Legnicy, zm. 29 grudnia 1891 w Berlinie) – niemiecki matematyk i logik. Brat Hugona Kroneckera.John von Neumann (ur. 28 grudnia 1903 w Budapeszcie, zm. 8 lutego 1957 w Waszyngtonie) – węgierski matematyk, inżynier chemik, fizyk i informatyk, pracujący głównie w Stanach Zjednoczonych. Wniósł znaczący wkład do wielu dziedzin matematyki – w szczególności był głównym twórcą teorii gier, teorii automatów komórkowych (w które pewien początkowy wkład miał także Stanisław Ulam) i stworzył formalizm matematyczny mechaniki kwantowej. Uczestniczył w projekcie Manhattan. Przyczynił się do rozwoju numerycznych prognoz pogody.

    Choć wydawałoby się, że liczby naturalne są podstawowym pojęciem matematycznym i ich definicja była jedną z wcześniejszych, to jednak jest inaczej. Przykładowo bardziej skomplikowane liczby rzeczywiste (używane już w starożytności przez Eudoksosa, ok. 408 – ok. 355 p.n.e.) zostały zdefiniowane formalnie przez Dedekinda w połowie XIX w, podczas gdy definicję liczb naturalnych podał Giuseppe Peano pod koniec XIX w.

    Algebra ogólna – obiekt matematyczny będący przedmiotem badań algebry uniwersalnej. Czasami algebra uniwersalna nazywana jest algebrą ogólną, wówczas rozważane w niej obiekty nazywa się zwykle algebrami abstrakcyjnymi lub po prostu algebrami.Aksjomaty i konstrukcje liczb – metody ścisłego definiowania liczb używane w matematyce. Aksjomaty liczb to warunki, jakie muszą spełniać pewne obiekty oraz działania na nich, aby mogły być uznane za liczby danego rodzaju (np. liczby naturalne, liczby wymierne itp.). Konstrukcje liczb są algebrami, tak utworzonymi, aby spełniały właściwe danym liczbom aksjomaty.

    Według finitystów, zwolenników skrajnego nurtu filozofii matematyki, są to jedyne liczby, jakimi powinna zajmować się matematyka – słynne jest stwierdzenie propagatora arytmetyzacji wszystkich dziedzin matematyki Leopolda Kroneckera: Liczby naturalne stworzył dobry Bóg. Reszta jest dziełem człowieka.

    Zero[ | edytuj kod]

    Pierwotnie zero było wykorzystywane jako pomoc w oznaczeniu „pustego miejsca”. Już w VII w. p.n.e. Babilończycy stosowali zero jako cyfrę w zapisie pozycyjnym, ale nigdy nie występowało ono samodzielnie jako liczba. W cywilizacji Majów zero było znane jako liczba już w I w. p.n.e. (być może znali je już w IV wieku p.n.e. wchłonięci przez Majów Olmekowie). W kulturze zachodniej zero, jako oddzielna, pełnoprawna wartość, pojawiło się znacznie później.

    Arytmetyka (łac. arithmetica, gr. αριθμητική arithmētikē, od αριθμητικός arithmētikos – arytmetyczna, od αριθμειν arithmein – liczyć, od αριθμός arithmós – liczba; spokr. ze staroang. rīm – liczba, i być z gr. αραρισκειν arariskein – pasować) – jedna z najstarszych część matematyki. W powszechnym użyciu słowo to odnosi się do zasad opisujących podstawowe działania na liczbach (arytmetyka elementarna).Liczby całkowite – liczby naturalne dodatnie N + = { 1 , 2 , 3 , … } {displaystyle mathbb {N} _{+}={1,2,3,dots }} oraz liczby przeciwne do nich { − 1 , − 2 , − 3 , … } {displaystyle {-1,-2,-3,dots }} , a także liczba zero. Uogólnieniem liczb całkowitych są liczby wymierne i tym samym liczby rzeczywiste, szczególnym przypadkiem liczb całkowitych są: liczby naturalne.

    W roku 130 zera używał Klaudiusz Ptolemeusz. Współczesne pojęcie zera przypisuje się Hindusowi Brahmagupcie, pierwsze wzmianki pochodzą z roku 628. Zero stosowano niekonsekwentnie również w średniowieczu, nie miało ono jednak swojej reprezentacji w cyfrach rzymskich – stosowano łacińskie słowo nullae.

    Klaudiusz Ptolemeusz, Ptolemeusz Klaudiusz lub po prostu Ptolemeusz (łac. Claudius Ptolemaeus, stgr. Κλαύδιος Πτολεμαῖος Klaudios Ptolemaios; ur. ok. 100, zm. ok. 168) – astronom, matematyk i geograf greckiego pochodzenia. Urodzony w Tebaidzie, kształcił się i działał w Aleksandrii należącej wówczas do Imperium rzymskiego około II wieku n.e.<|||||||||| |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| - |||||||||| |||||||||| ||||||||||>


    Podstrony: 1 [2] [3] [4]




    Warto wiedzieć że... beta

    Ameryka Środkowa (ang. Middle America) – centralny region geograficzny Ameryki. Jest definiowany jako południowa część Ameryki Północnej, w której skład wchodzą dwie części: kontynentalna (Ameryka Centralna) i wyspiarska (Karaiby). Obszar liczy około 850 000 km² powierzchni i jest zamieszkany przez ponad 90 mln ludzi.
    Teoria mnogości lub inaczej: teoria zbiorów – dział matematyki, a zarazem logiki matematycznej zapoczątkowany przez niemieckiego matematyka Georga Cantora pod koniec XIX wieku. Teoria początkowo wzbudzała wiele kontrowersji, jednak wraz z postępem matematyki zaczęła ona pełnić rolę fundamentu, na którym opiera się większość matematycznych rozważań.
    Liczebnik – część mowy określająca liczbę, ilość, liczebność, wielokrotność lub kolejność. Niektóre liczebniki (np. główne, porządkowe) odmieniają się przez przypadki i rodzaje.
    W matematyce p-adyczny system liczbowy dla dowolnej liczby pierwszej p stanowi rozszerzenie arytmetyki liczb wymiernych w sposób istotnie różny od rozszerzenia do liczb rzeczywistych bądź zespolonych. Rozszerzenie to uzyskuje się przez alternatywną interpretację pojęcia "bliskości" czy też wartości bezwzględnej. W szczególności, dwie liczby p-adyczne są bliskie, gdy ich różnica jest podzielna przez wysoką potęgę p. Ta własność sprawia, że liczby p-adyczne dobrze służą do opisu kongruencji. Okazuje się, że dzięki temu znajdują zastosowanie w teorii liczb, w tym w słynnym dowodzie Wielkiego Twierdzenia Fermata odkrytym przez Andrew Wilesa.
    Pierścień – struktura formalizująca własności algebraiczne liczb całkowitych oraz arytmetyki modularnej; intuicyjnie zbiór, którego elementy mogą być bez przeszkód dodawane, odejmowane i mnożone, lecz niekoniecznie dzielone. Badanie pierścieni umożliwiło uogólnienie innych pojęć matematycznych takich, jak np. liczby pierwsze (przez ideały pierwsze), wielomiany, ułamki oraz rozwinięcie teorii podzielności i wskazania przy tym najogólniejszej struktury, w której możliwe jest stosowanie algorytmu Euklidesa (tzw. pierścień Euklidesa). Dział matematyki opisujący te struktury nazywa się teorią pierścieni.
    Library of Congress Control Number (LCCN) – numer nadawany elementom skatalogowanym przez Bibliotekę Kongresu wykorzystywany przez amerykańskie biblioteki do wyszukiwania rekordów bibliograficznych w bazach danych i zamawiania kart katalogowych w Bibliotece Kongresu lub u innych komercyjnych dostawców.
    Teoria liczb - dziedzina matematyki, zajmująca się badaniem własności liczb – początkowo tylko naturalnych, i do dziś dla wielu specjalistów są one szczególnie atrakcyjne.

    Reklama

    Czas generowania strony: 0.022 sek.