• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Liczby kwantowe



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Cząsteczka (molekuła) – neutralna elektrycznie grupa dwóch lub więcej atomów utrzymywanych razem kowalencyjnym wiązaniem chemicznym. Cząsteczki różnią się od cząstek (np. jonów) brakiem ładunku elektrycznego. Jednakże, w fizyce kwantowej, chemii organicznej i biochemii pojęcie cząsteczka jest zwyczajowo używane do określania jonów wieloatomowych.W mechanice kwantowej pęd jest opisywany przez obserwablę - operator pędu. Przejście od pędu do operatora pędu jest nazywane pierwszym kwantowaniem. Matematycznie, operator pędu jest nieograniczonym operatorem samosprzężonym na ośrodkowej przestrzeni Hilberta.
    Dyskretne linie promieniowania emitowanego przez wodór w zakresie widzialnym – ewidentny dowód kwantowania energii elektronu w atomie. Gdyby energia nie była skwantowana, to wodór promieniowałby pełne widmo, jakie daje np. tęcza utworzona ze światła słonecznego.

    Liczby kwantowe – liczby opisujące dyskretne wielkości fizyczne, np. poziomy energetyczne cząstek, atomów, jąder atomowych, cząsteczek gazów, elektronów swobodnych czy w sieci krystalicznej itd. Także inne wielkości, jak pęd, moment pędu, spin, izospin, parzystość są opisywane za pomocą liczb kwantowych. Pojęcie to pojawiło się w fizyce wraz z odkryciem mechaniki kwantowej. Prawie wszystkie wielkości fizyczne na poziomie cząstek i atomów podlegają zjawisku kwantowania, tzn. przyjmują ściśle określone, dyskretne wartości.

    Atom – podstawowy składnik materii. Składa się z małego dodatnio naładowanego jądra o dużej gęstości i otaczającej go chmury elektronowej o ujemnym ładunku elektrycznym.Parzystość w fizyce to własność zmiany znaku funkcji falowej lub pola kwantowego przy zmianie znaku jednego z jej argumentów: współrzędnych przestrzeni (P), kierunku upływu czasu (T), ładunku elektrycznego (C) lub innych.

    Spis treści

  • 1 Informacje ogólne
  • 2 Liczby kwantowe elektronu w atomie
  • 3 Liczby kwantowe układu wielu cząstek
  • 4 Operatory a liczby kwantowe
  • 5 Zobacz też
  • 6 Przypisy
  • 7 Bibliografia
  • Informacje ogólne[]

    W półklasycznym modelu atomu Bohra elektron porusza się po orbitach mających ściśle określone, dyskretne wartości energii. Według współczesnego obrazu, jaki podaje mechanika kwantowa rozwiązując równanie Schrödingera, elektron w atomie przebywa w stanach kwantowych, które nie są przedstawiane jako orbity. Jednak i tu elektrony w atomie mogą przyjmować tylko stany o dyskretnych wartościach energii, określonych z dokładnością wyznaczoną przez zasadę nieoznaczoności. Dowodem słuszności takiego obrazu są dyskretne linie widmowe promieniowania, emitowanego przez pobudzony do świecenia gazowy wodór.

    Główna liczba kwantowa (n) - pierwsza z liczb kwantowych opisujących układ kwantowy określająca energię układu, np. energię elektronów w atomie. Przyjmuje ona wartości liczb naturalnych n = 1, 2, 3, 4, 5, 6, 7... Stany kwantowe o tej samej wartości głównej liczby kwantowej tworzą powłokę elektronową, zwaną poziomem energetycznym. Powłoki te oznacza się kolejno K, L, M, N, O, P, Q. Powłoce K odpowiada n = 1, powłoce L odpowiada n = 2...Mechanika kwantowa (teoria kwantów) – teoria praw ruchu obiektów świata mikroskopowego. Poszerza zakres mechaniki na odległości czasoprzestrzenne i energie, dla których przewidywania mechaniki klasycznej nie sprawdzały się. Opisuje przede wszystkim obiekty o bardzo małych masach i rozmiarach - np. atom, cząstki elementarne itp. Jej granicą dla średnich rozmiarów lub średnich energii czy pędów jest mechanika klasyczna.

    Inne doświadczenia pokazały, że dyskretne wartości przyjmują także inne wielkości, np. pęd, moment pędu, moment magnetyczny i spin. Kwantowaniu podlega nie tylko wartość wektora, ale też jego rzutu na wybraną oś.

    Wobec takiego stanu rzeczy naturalnym pomysłem było ponumerowanie wszystkich możliwych wartości energii, pędu, momentu pędu itd. Te numery to właśnie liczby kwantowe.

    W zależności od wielkości, którą opisują, liczby kwantowe mogą przyjmować wartości całkowite dodatnie (np. energia), całkowite dowolnego znaku (np. rzuty momentu pędu na wybrany kierunek) lub ułamkowe dowolnego znaku (np. rzuty spinu elektronu na wybrany kierunek).

    Kwantowy oscylator harmoniczny – układ fizyczny rozmiarów atomowych lub subatomowych (np. jon w sieci krystalicznej lub w cząsteczka gazu) wykonujący ruch drgający (oscylacyjny) pod wpływem siły proporcjonalnej do wychylenia od położenia równowagi. Właściwy opis ruchu wymaga zastosowania mechaniki kwantowej, co sprowadza się do znalezienia rozwiązań równania Schrödingera. Dowodem eksperymentalnym konieczności zastosowania mechaniki kwantowej do opisu właściwości mikroskopowych układów drgających jest np. nieciągłe widmo promieniowania emitowane przez drgające cząsteczki. Makroskopowym odpowiednikiem oscylatora kwantowego jest klasyczny oscylator harmoniczny, którym jest ciało makroskopowe o stosunkowo dużej masie, zawieszone np. na sprężynie i wykonujące drgania; do opisu jego ruchu wystarczająca jest mechanika klasyczna. Pojęcie oscylatora ma duże zastosowanie i znaczenie w wielu działach fizyki klasycznej i kwantowej.Wektory i wartości własne – wielkości opisujące endomorfizm danej przestrzeni liniowej; wektor własny przekształcenia można rozumieć jako wektor, którego kierunek nie ulega zmianie po przekształceniu go endomorfizmem; wartość własna odpowiadająca temu wektorowi to skala podobieństwa tych wektorów.

    Podanie odpowiedniego zestawu liczb kwantowych pozwala w pełni scharakteryzować stan atomu, jądra atomowego, cząsteczki czy układów bardzo złożonych, jakimi są np. ciała stałe, ciecze czy gazy. Właściwy opis układów fizycznych otrzymuje się w ramach mechaniki kwantowej. Fizyka cząstek elementarnych klasyfikuje cząstki w oparciu o odpowiednie liczby kwantowe.

    Wartość dyskretna to wartość nieciągła, pojedyncza. Przykładem może być sygnał cyfrowy w maszynach cyfrowych. Sygnał taki to zbiór zero-jedynkowy, lub złożony z ciągu konkretnych napięć. W matematyce - przeciwieństwo ciągłości, np. funkcja f(x)= [x] (przyporządkowująca każdej liczbie rzeczywistej jej wartość całkowitą) ma dziedzinę ciągłą, a zbiór wartości dyskretnych.Wodór (H, łac. hydrogenium) – pierwiastek chemiczny o liczbie atomowej 1, niemetal z bloku s układu okresowego. Jego izotop, prot, jest najprostszym możliwym atomem, zbudowanym z jednego protonu i jednego elektronu.

    Symbole liczb kwantowych są ustalone tradycją.

    Podstrony: 1 [2] [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Operator Hamiltona (hamiltonian, operator energii) – w mechanice kwantowej odpowiednik funkcji Hamiltona zwanej hamiltonianem. Jest to operator działający nad przestrzenią funkcji falowych stanów układu fizycznego (lub nad przestrzenią Hilberta wektorów stanu). Wartością własną operatora Hamiltona jest energia cząstki opisywanej daną funkcją własną, natomiast wartością średnią operatora Hamiltona jest energia cząstki w danym stanie kwantowym. Matematycznie, operator Hamiltona jest obserwablą, a więc jest operatorem samosprzężonym.
    Cząstka (korpuskuła) – w tradycyjnym znaczeniu, to każdy fragment materii, który ma kształt mniej lub bardziej zbliżony do sfery i jest na tyle mały, że nie można go zobaczyć gołym okiem. W tym określeniu informacja o kształcie nie dotyczy cząstek elementarnych (zob. fizyka cząstek elementarnych), w przypadku których nie ma żadnego sensu mówić o ich kształcie, gdyż ich "zachowanie" trudno jest sobie wyobrażać w kategoriach makroskopowych wyobrażeń zmysłowych.
    Kwantowanie, kwantyzacja — konstrukcja pozwalająca na przejście z klasycznej teorii pola do kwantowej teorii pola. Kwantowanie jest uogólnieniem konstrukcji stosowanej przy przejściu z mechaniki klasycznej do mechaniki kwantowej.
    Energia gr. ενεργεια (energeia) – skalarna wielkość fizyczna charakteryzująca stan układu fizycznego (materii) jako jego zdolność do wykonania pracy.
    Spin – moment własny pędu cząstki w układzie, w którym nie wykonuje ruchu postępowego. Własny oznacza tu taki, który nie wynika z ruchu danej cząstki względem innych cząstek, lecz tylko z samej natury tej cząstki. Każdy rodzaj cząstek elementarnych ma odpowiedni dla siebie spin. Cząstki będące konglomeratami cząstek elementarnych (np. jądra atomów) mają również swój spin będący sumą wektorową spinów wchodzących w skład jego cząstek elementarnych.
    Orbital – funkcja falowa będącą rozwiązaniem równania Schrödingera dla szczególnego przypadku układu jednego elektronu znajdującego się na jednej z powłok atomowych lub tworzących wiązanie chemiczne. Orbital jest funkcją falową jednego elektronu, której kwadrat modułu (zgodnie z interpretacją Maxa Borna) określa gęstość prawdopodobieństwa napotkania elektronu w danym punkcie przestrzeni.
    Wielkość fizyczna – właściwość fizyczna ciała lub zjawiska, którą można określić ilościowo, czyli zmierzyć.

    Reklama