• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Liczby całkowite Eisensteina



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.Liczby całkowite – liczby naturalne dodatnie N + = { 1 , 2 , 3 , … } {displaystyle mathbb {N} _{+}={1,2,3,dots }} oraz liczby przeciwne do nich { − 1 , − 2 , − 3 , … } {displaystyle {-1,-2,-3,dots }} , a także liczba zero. Uogólnieniem liczb całkowitych są liczby wymierne i tym samym liczby rzeczywiste, szczególnym przypadkiem liczb całkowitych są: liczby naturalne.

    Liczby całkowite Eisensteina (nazywane także liczbami Eisensteina-Jacobiego) – liczby postaci , gdzie i liczbami całkowitymi,

    Liczby naturalne – liczby służące podawaniu liczności (trzy osoby, zob. liczebnik główny/kardynalny) i ustalania kolejności (trzecia osoba, zob. liczebnik porządkowy), poddane w matematyce dalszym uogólnieniom (odpowiednio: liczby kardynalne, liczby porządkowe). Badaniem własności liczb naturalnych zajmują się arytmetyka i teoria liczb. Według finitystów, zwolenników skrajnego nurtu filozofii matematyki, są to jedyne liczby, jakimi powinna zajmować się matematyka - słynne jest stwierdzenie propagatora arytmetyzacji wszystkich dziedzin matematyki Leopolda Kroneckera: Liczby całkowite stworzył dobry Bóg. Reszta jest dziełem człowieka.Pierścień – struktura formalizująca własności algebraiczne liczb całkowitych oraz arytmetyki modularnej; intuicyjnie zbiór, którego elementy mogą być bez przeszkód dodawane, odejmowane i mnożone, lecz niekoniecznie dzielone. Badanie pierścieni umożliwiło uogólnienie innych pojęć matematycznych takich, jak np. liczby pierwsze (przez ideały pierwsze), wielomiany, ułamki oraz rozwinięcie teorii podzielności i wskazania przy tym najogólniejszej struktury, w której możliwe jest stosowanie algorytmu Euklidesa (tzw. pierścień Euklidesa). Dział matematyki opisujący te struktury nazywa się teorią pierścieni.
    ,

    oraz i jest jednostką urojoną. jest pierwiastkiem zespolonym równania . Zarówno suma, różnica, jak i iloczyn liczb Eisensteina również są liczbami Eisensteina, tworzą więc one pierścień. Pierścień ten jest euklidesowy z normą daną wzorem

    Liczby całkowite Gaussa (liczby całkowite zespolone) to liczby zespolone, których części rzeczywiste i części urojone są liczbami całkowitymi. Formalnie, zbiór liczb całkowitych Gaussa definiuje się jako { a + b i : a , b ∈ Z ∧ i 2 = − 1 } {displaystyle {a+bi:a,bin mathbb {Z} wedge i^{2}=-1}} .Odejmowanie – jedno z czterech podstawowych działań arytmetycznych, działanie odwrotne do dodawania. Odejmowane obiekty to odpowiednio odjemna i odjemnik, wynik zaś nazywany jest różnicą.
    .

    W szczególności, pierścień liczb całkowitych Eisensteina jest pierścieniem z jednoznacznością rozkładu. Na płaszczyźnie zespolonej liczby całkowite Eisensteina są węzłami regularnej sieci trójkątnej (złożonej z trójkątów równobocznych, jak na rysunkach poniżej).

    Pierścień z jednoznacznością rozkładu (pierścień Gaussa, UFD, od ang. unique factorization domain) – pierścień przemienny, którego każdy element nieodwracalny może być przedstawiony jako iloczyn elementów pierwszych w jednoznaczny sposób, tzn. jednoznaczny co do permutacji czynników. Pierścienie te uogólniają pierścień liczb całkowitych w ten sposób, że spełniają one także tezę podstawowego twierdzenia arytmetyki.Mnożenie – działanie dwuargumentowe będące jednym z czterech podstawowych działań arytmetycznych. Mnożone elementy to czynniki (określane również jako mnożna i mnożnik), a jego wynik to iloczyn. Może być ono traktowane jako zapis wielokrotnego dodawania elementu do siebie.

    Zbiór liczb pierwszych Eisensteina jest (z dokładnością do mnożenia przez niżej wspomniane elementy odwracalne) sumą dwóch zbiorów:

    1. zbioru liczb , takich że a jest liczbą pierwszą, taką że oraz b = 0,
    2. zbioru liczb , takich że jest taką liczbą pierwszą p, że .
    Liczby pierwsze Eisensteina mogą być liczbami całkowitymi, ale wiele z nich ma niezerową część urojoną. Na rysunku liczby pierwsze Eisensteina zostały wyróżnione kolorem zielonym, a elementy odwracalne kolorem czerwonym.

    Grupa elementów odwracalnych pierścienia liczb całkowitych Eisensteina jest sześcioelementowa i składa się z liczb:

    Dziedzina Euklidesa (albo pierścień Euklidesa, pierścień euklidesowy) – w teorii pierścieni najbardziej ogólny typ pierścieni, w którym możliwe jest wyznaczenie największego wspólnego dzielnika za pomocą algorytmu Euklidesa.Element odwracalny – w algebrze dla danego (wewnętrznego) działania dwuargumentowego określonego w pewnej strukturze algebraicznej element, dla którego istnieje element do niego odwrotny względem tego działania.

    Na płaszczyźnie zespolonej można ją zinterpretować jako grupę obrotów dokoła początku układu współrzędnych generowaną przez obrót o 60° (na przykład w kierunku przeciwnym do obrotu wskazówek zegara). Wynika stąd, że liczb pierwszych Eisensteina wystarczy szukać wewnątrz jakiegokolwiek kąta o mierze 60° o wierzchołku w punkcie 0 (np. kąta, którego pierwsze ramię pokrywa się z dodatnią półosią osi odciętych, a drugie ramię przechodzi przez punkt ).

    Podstrony: 1 [2] [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Reklama

    Czas generowania strony: 0.026 sek.