• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Liczby algebraiczne

    Przeczytaj także...
    Liczba π (czytaj: liczba pi), ludolfina – stała matematyczna, która pojawia się w wielu dziedzinach matematyki i fizyki. W geometrii euklidesowej π jest równe stosunkowi długości obwodu koła do długości jego średnicy. Można też zdefiniować π na inne sposoby, na przykład jako pole koła o promieniu równym 1 albo jako najmniejszą dodatnią wartość x, dla której funkcja sinus przyjmuje wartość 0.Wielomian – wyrażenie algebraiczne złożone ze zmiennych i stałych połączonych działaniami dodawania, odejmowania, mnożenia i podnoszenia do potęgi o stałym wykładniku naturalnym.
    Kwadratura koła – problem polegający na skonstruowaniu kwadratu, którego pole równe jest polu danego koła przy użyciu wyłącznie cyrkla i linijki bez podziałki. Jest to jeden z trzech wielkich problemów starożytnej matematyki greckiej (obok trysekcji kąta i podwojenia sześcianu), sformułowany przez szkołę pitagorejską.

    Liczby algebraiczneliczby rzeczywiste (ogólniej zespolone), będące pierwiastkami pewnego niezerowego wielomianu o współczynnikach wymiernych (a więc i całkowitych).

    Dowodzi się, że dla każdej liczby algebraicznej α istnieje wielomian nierozkładalny nad , którego pierwiastkiem jest α. Stopień tego wielomianu nazywamy stopniem liczby α.

    Liczby całkowite – liczby naturalne dodatnie N + = { 1 , 2 , 3 , … } {displaystyle mathbb {N} _{+}={1,2,3,dots }} oraz liczby przeciwne do nich { − 1 , − 2 , − 3 , … } {displaystyle {-1,-2,-3,dots }} , a także liczba zero. Uogólnieniem liczb całkowitych są liczby wymierne i tym samym liczby rzeczywiste, szczególnym przypadkiem liczb całkowitych są: liczby naturalne.Stopień jednomianu – suma wszystkich wykładników potęg przy zmiennych niezerowego jednomianu, np. jednomian x y = x 1 y 1 {displaystyle xy=x^{1}y^{1}} jest stopnia drugiego.

    Zbiór liczb algebraicznych tworzy ciało. W 1882 Ferdinand Lindemann dowiódł, że liczba π nie jest algebraiczna, czyli jest przestępna, i tym samym udowodnił, że kwadratura koła nie jest możliwa.

    Przykłady[]

  • Każda liczba wymierna jest liczbą algebraiczną stopnia 1, bo jest pierwiastkiem wielomianu nierozkładalnego .
  • Liczba jest liczbą algebraiczną stopnia 2, bo jest pierwiastkiem wielomianu .
  • Zobacz też[]

  • element algebraiczny
  • liczba
  • ciało algebraicznie domknięte
  • Ciało algebraicznie domknięte F {displaystyle F} to takie ciało, w którym każdy wielomian stopnia co najmniej pierwszego jednej zmiennej ma pierwiastek w F {displaystyle F} .Liczba przestępna – liczba rzeczywista lub ogólniej zespolona z {displaystyle z,} , która nie jest pierwiastkiem żadnego niezerowego wielomianu jednej zmiennej o współczynnikach wymiernych, tzn. z {displaystyle z,} jest liczbą przestępną, gdy:



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Zbiór – pojęcie pierwotne teorii zbiorów (znanej szerzej jako teoria mnogości; za jej twórcę uważa się Georga Cantora) leżące u podstaw całej matematyki; intuicyjnie jest to nieuporządkowany zestaw różnych obiektów, czy też kolekcja niepowtarzających się komponentów bez wyróżnionej kolejności.
    Zbiór liczb rzeczywistych – uzupełnienie zbioru liczb wymiernych. Zbiór liczb rzeczywistych zawiera m.in. liczby naturalne, ujemne, całkowite, pierwiastki liczb dodatnich, wymierne, niewymierne, przestępne, itd. Z drugiej strony na liczby rzeczywiste można też patrzeć jak na szczególne przypadki liczb zespolonych.
    Carl Louis Ferdinand von Lindemann (ur. 12 kwietnia 1852 w Hanowerze, zm. 6 marca 1939 w Monachium) – niemiecki matematyk, autor dowodu, że π jest liczbą przestępną.
    Element algebraiczny - uogólnienie pojęcia liczby algebraicznej na rozszerzenia dowolnych ciał. Liczby algebraiczne to elementy algebraiczne ciała liczb zespolonych nad ciałem liczb wymiernych.
    Ciało – struktura formalizująca własności algebraiczne liczb wymiernych, czy liczb rzeczywistych. W trakcie badań nad tymi obiektami rozwinął się aparat matematyczny (tzw. teoria Galois) umożliwiający rozwiązanie takich problemów jak rozwiązalność równań wielomianowych (jednej zmiennej) przez tzw. pierwiastniki (działania obowiązujące w ciałach i wyciąganie pierwiastków), czy wykonalność pewnych konstrukcji klasycznych (konstrukcji geometrycznych, w których dozwolone jest korzystanie z wyidealizowanych cyrkla i linijki). Działem matematyki zajmującym się opisem tych struktur jest teoria ciał.
    Definicja intuicyjna: Ułamki liczb całkowitych o niezerowym mianowniku; liczby rzeczywiste mające skończone, bądź okresowe od pewnego miejsca rozwinięcie dziesiętne.
    Liczba – pojęcie abstrakcyjne, jedno z najczęściej używanych w matematyce. Pierwotnie liczby służyły do porównywania wielkości zbiorów przedmiotów (liczby naturalne), później także wielkości ciągłych (miary i wagi), obecnie w matematyce są rozważane jako twory abstrakcyjne, w oderwaniu od ewentualnych fizycznych zastosowań.

    Reklama

    Czas generowania strony: 0.041 sek.