• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Liczba odwrotna

    Przeczytaj także...
    Arytmetyka modularna, arytmetyka reszt – w matematyce system liczb całkowitych, w którym liczby „zawijają się” po osiągnięciu pewnej wartości nazywanej modułem, często określanej terminem modulo (skracane mod). Pierwszy pełny wykład arytmetyki reszt przedstawił Carl Friedrich Gauss w Disquisitiones Arithmeticae („Badania arytmetyczne”, 1801).Liczba pierwsza – liczba naturalna większa od 1, która ma dokładnie dwa dzielniki naturalne: jedynkę i siebie samą, np.
    Liczba przeciwna do danej liczby a , {displaystyle a,;} to taka liczba − a , {displaystyle -a,;} że zachodzi:

    Liczba odwrotna do danej liczby to taka liczba że

    Arytmetyka (łac. arithmetica, gr. αριθμητική arithmētikē, od αριθμητικός arithmētikos – arytmetyczna, od αριθμειν arithmein – liczyć, od αριθμός arithmós – liczba; spokr. ze staroang. rīm – liczba, i być z gr. αραρισκειν arariskein – pasować) – jedna z najstarszych część matematyki. W powszechnym użyciu słowo to odnosi się do zasad opisujących podstawowe działania na liczbach (arytmetyka elementarna).Liczby względnie pierwsze – liczby całkowite, które nie mają innych poza jedynką wspólnych dzielników w rozkładzie na czynniki pierwsze lub, równoważnie, ich największym wspólnym dzielnikiem jest jedność; te, w których żadna para nie ma wspólnych dzielników w rozkładzie poza jedynką lub, równoważnie, których największy wspólny dzielnik dla dowolnej pary wynosi jeden, nazywa się parami względnie pierwszymi.

    Jest to zgodne z ogólną definicją elementu odwrotnego mnożenia w algebrze, zapisywanego zwykle jako lub W liczbach rzeczywistych jest on określany przez funkcję homograficzną W arytmetyce modularnej również można określić element odwrotny modulo jeśli i względnie pierwsze. Element taki można uzyskać korzystając z rozszerzonego algorytmu Euklidesa dla i Pozwala to określić działanie dzielenia w dla pierwszych (i częściowo dla innych ) jako mnożenie przez odwrotność.

    Algorytm Euklidesa – pierwszy znany algorytm wyznaczania największego wspólnego dzielnika dwóch liczb naturalnych. Został opisany przez greckiego matematyka, Euklidesa w jego dziele "Elementy", w księgach siódmej oraz dziesiątej.Mnożenie – działanie dwuargumentowe będące jednym z czterech podstawowych działań arytmetycznych. Mnożone elementy to czynniki (określane również jako mnożna i mnożnik), a jego wynik to iloczyn. Może być ono traktowane jako zapis wielokrotnego dodawania elementu do siebie.

    Zobacz też[ | edytuj kod]

  • arytmetyka
  • liczba
  • liczba przeciwna
  • Zbiór liczb rzeczywistych – uzupełnienie zbioru liczb wymiernych. Zbiór liczb rzeczywistych zawiera m.in. liczby naturalne, ujemne, całkowite, pierwiastki liczb dodatnich, wymierne, niewymierne, przestępne, itd. Z drugiej strony na liczby rzeczywiste można też patrzeć jak na szczególne przypadki liczb zespolonych.Liczba – pojęcie abstrakcyjne, jedno z najczęściej używanych w matematyce. Pierwotnie liczby służyły do porównywania wielkości zbiorów przedmiotów (liczby naturalne), później także wielkości ciągłych (miary i wagi), obecnie w matematyce są rozważane jako twory abstrakcyjne, w oderwaniu od ewentualnych fizycznych zastosowań.



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Reklama

    Czas generowania strony: 0.013 sek.