• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Liczba



    Podstrony: [1] [2] [3] [4] 5 [6]
    Przeczytaj także...
    Perl – interpretowany język programowania autorstwa Larry’ego Walla początkowo przeznaczony głównie do pracy z danymi tekstowymi, obecnie używany do wielu innych zastosowań. Wzorowany na takich językach jak C, skryptowe: sed, awk i sh oraz na wielu innych.Liczby dualne – wyrażenia postaci z = a + b ϵ {displaystyle z=a+bepsilon } , gdzie a , b ∈ R {displaystyle a,bin mathbb {R} } oraz ϵ 2 = 0 {displaystyle epsilon ^{2}=0} ( ϵ {displaystyle epsilon } jest nilpotentem).
    Przypisy[ | edytuj kod]
    1. Np. fraktale.
    2. Zob. zastosowanie liczb zespolonych w analizie obwodów elektrycznych, ponadto stosowane są one również w teorii sygnałów.
    3. Np. funkcja falowa.
    4. A history of Zero. [zarchiwizowane z tego adresu].
    5. Zdaniem pitagorejczyków odkrycie to zaprzeczało głoszonej przez nich doskonałości wszelkich liczb – liczby niewymierne uznali za niedoskonałe. Zobacz też dowód niewymierności pierwiastka z dwóch.
    6. Witold Więsław stwierdza: Pitagorejczycy udowodnili, że przekątna kwadratu nie jest współmierna z jego bokiem, tzn. jest liczbą niewymierną. Byłoby interesujące dowiedzieć się, kto pierwszy tego dowiódł. Zapewne nigdy się już tego nie dowiemy. Jedno jest pewne: Pitagoras pod koniec V w. p.n.e. wiedział, że jest liczbą niewymierną. (Zob.: Więsław, Witold: Matematyka i jej historia, Wydawnictwo NOWIK, Opole 1997, ​ISBN 83-905456-7-5​, strona 36.).
    7. Eric W. Weisstein, Rational Number, [w:] MathWorld [online], Wolfram Research [dostęp 2007-04-12] (ang.).
    8. Co udowodnił Georg Cantor w 1874; zobacz też twierdzenie Cantora.
    9. Typografia wyróżnia cztery różne znaki: - (dywiz, łącznik), – (półpauza), — (pauza) oraz − (minus), który od półpauzy różni się wyglądem oraz położeniem (zgodnym z innymi znakami matematycznymi).
    10. Dokumentacja: https://docs.oracle.com/javase/7/docs/api/java/math/BigInteger.html.
    11. Dokumentacja: https://docs.microsoft.com/en-us/previous-versions/ms128741(v=vs.100).

    Bibliografia[ | edytuj kod]

  • Jerzy Klukowski, I. Nabiałek: Algebra dla studentów. Wyd. 4. Wydawnictwa Naukowo-Techniczne, 2004. ISBN 83-204-3124-7.
  • Franciszek Leja: Rachunek różniczkowy i całkowy. Warszawa: PWN, 1976.
  • Krzysztof Maurin: Analiza – Część I – Elementy. Warszawa: PWN, 1976.
  • Helena Musielak, Julian Musielak: Analiza matematyczna. Poznań: Wydawnictwo Naukowe UAM, 2000. ISBN 83-232-1049-7.
  • Fritz Reinhardt, Heinrich Soeder: Atlas matematyki. Prószyński i S-ka, 2003. ISBN 83-7469-189-1.
  • Jerzy Rutkowski: Algebra abstrakcyjna w zadaniach. Wyd. 5. PWN, 2006. ISBN 83-01-14388-6.
  • J. Widomski: Ontologia liczby. Kraków: 1996.
  • Wyprowadzenie wszystkich algebr liczbowych od liczb naturalnych do oktaw Cayleya włącznie, w sposób zrozumiały dla uczniów gimnazjum, znajduje się w książce:

    Kod uzupełnień do dwóch (w skrócie U2 lub ZU2) – system reprezentacji liczb całkowitych w dwójkowym systemie pozycyjnym. Jest obecnie najpopularniejszym sposobem zapisu liczb całkowitych w systemach cyfrowych. Jego popularność wynika z faktu, że operacje dodawania i odejmowania są w nim wykonywane tak samo jak dla liczb binarnych bez znaku. Z tego też powodu oszczędza się na kodach rozkazów procesora.Mechanika płynów (ang. fluid mechanics) - dział mechaniki ośrodków ciągłych zajmujący się analizą ruchu płynów. Przez płyny rozumie się tutaj zarówno ciecze jak i gazy. Rozwiązaniem zagadnień mechaniki płynów zwykle jest określenie własności płynu (takich jak gęstość, temperatura) i własności danego przepływu (podanie pola prędkości, ciśnienia), w zależności od współrzędnych przestrzennych i czasu.
  • Bogdan Miś: Tajemnicza liczba e i inne sekrety matematyki. Warszawa: Wydawnictwa Naukowo-Techniczne, 1989.


  • Podstrony: [1] [2] [3] [4] 5 [6]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Moc zbioru – własność zbioru, która opisuje jego liczebność. Nieformalnie, moc zbioru jest tym większa im większy jest zbiór. Pojęcie mocy zbioru opiera się na pojęciu równoliczności dwóch zbiorów – zbiory A i B są równoliczne, gdy każdy element zbioru A można połączyć w parę z dokładnie jednym elementem zbioru B, innymi słowy istnieje bijekcja (funkcja różnowartościowa i "na") między zbiorami A i B. Zbiory równoliczne mają tę samą moc. Moce zbiorów są konkretnymi obiektami matematycznymi, nazywanymi liczbami kardynalnymi.
    Diagram Hassego – graf skierowany przedstawiający częściowy porządek w zbiorze, w odpowiedni sposób przedstawiony graficznie.
    Wartość bezwzględna a. moduł – dla danej liczby rzeczywistej wartość liczbowa nieuwzględniająca znaku liczby. Przykładowo Parser nie mógł rozpoznać (Nie można zapisać obrazu z wzorem w systemie plików.): 5
    Typ – w językach programowania opis rodzaju, struktury i zakresu wartości, jakie może przyjmować dany literał, zmienna, stała, argument, wynik funkcji lub wartość.
    Liczba π (czytaj: liczba pi), ludolfina – stała matematyczna, która pojawia się w wielu dziedzinach matematyki i fizyki. W geometrii euklidesowej π jest równe stosunkowi długości obwodu koła do długości jego średnicy. Można też zdefiniować π na inne sposoby, na przykład jako pole koła o promieniu równym 1 albo jako najmniejszą dodatnią wartość x, dla której funkcja sinus przyjmuje wartość 0.
    Linia prosta lub prosta – jedno z podstawowych pojęć geometrii, szczególny przypadek nieograniczonej z obydwu stron krzywej o nieskończonym promieniu krzywizny w każdym punkcie.
    Liczba algebraiczna to liczba rzeczywista (ogólniej zespolona), która jest pierwiastkiem pewnego niezerowego wielomianu o współczynnikach wymiernych (a więc i całkowitych).

    Reklama

    Czas generowania strony: 0.064 sek.