• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Liczba



    Podstrony: [1] 2 [3] [4] [5] [6]
    Przeczytaj także...
    Perl – interpretowany język programowania autorstwa Larry’ego Walla początkowo przeznaczony głównie do pracy z danymi tekstowymi, obecnie używany do wielu innych zastosowań. Wzorowany na takich językach jak C, skryptowe: sed, awk i sh oraz na wielu innych.Liczby dualne – wyrażenia postaci z = a + b ϵ {displaystyle z=a+bepsilon } , gdzie a , b ∈ R {displaystyle a,bin mathbb {R} } oraz ϵ 2 = 0 {displaystyle epsilon ^{2}=0} ( ϵ {displaystyle epsilon } jest nilpotentem).
    Oznaczenia zbiorów liczbowych[ | edytuj kod]

    W matematyce powszechnie przyjęte są pewne oznaczenia zbiorów liczbowych. W polskich gimnazjach i szkołach średnich korzysta się z symboli nawiązujących do polskich nazw zbiorów, jednak w szkołach wyższych i środowisku naukowym (a także tym i pozostałych artykułach Wikipedii) korzysta się z oznaczeń międzynarodowych.

    Kod uzupełnień do dwóch (w skrócie U2 lub ZU2) – system reprezentacji liczb całkowitych w dwójkowym systemie pozycyjnym. Jest obecnie najpopularniejszym sposobem zapisu liczb całkowitych w systemach cyfrowych. Jego popularność wynika z faktu, że operacje dodawania i odejmowania są w nim wykonywane tak samo jak dla liczb binarnych bez znaku. Z tego też powodu oszczędza się na kodach rozkazów procesora.Mechanika płynów (ang. fluid mechanics) - dział mechaniki ośrodków ciągłych zajmujący się analizą ruchu płynów. Przez płyny rozumie się tutaj zarówno ciecze jak i gazy. Rozwiązaniem zagadnień mechaniki płynów zwykle jest określenie własności płynu (takich jak gęstość, temperatura) i własności danego przepływu (podanie pola prędkości, ciśnienia), w zależności od współrzędnych przestrzennych i czasu.

    Własności algebraiczne[ | edytuj kod]

    Działania na liczbach, takie jak dodawanie, odejmowanie, mnożenie czy dzielenie, można zdefiniować także w zbiorach, które nie mają z liczbami wiele wspólnego, jak symetrie wielościanów w przestrzeni, o ile tylko działania te będą tam miały podobne właściwości, np. będą przemienne, czy łączne. Struktury algebraiczne, w których działania mają pewne określone właściwości, posiadają w algebrze własne nazwy, takie jak grupa, pierścień czy ciało.

    Moc zbioru – własność zbioru, która opisuje jego liczebność. Nieformalnie, moc zbioru jest tym większa im większy jest zbiór. Pojęcie mocy zbioru opiera się na pojęciu równoliczności dwóch zbiorów – zbiory A i B są równoliczne, gdy każdy element zbioru A można połączyć w parę z dokładnie jednym elementem zbioru B, innymi słowy istnieje bijekcja (funkcja różnowartościowa i "na") między zbiorami A i B. Zbiory równoliczne mają tę samą moc. Moce zbiorów są konkretnymi obiektami matematycznymi, nazywanymi liczbami kardynalnymi.Diagram Hassego – graf skierowany przedstawiający częściowy porządek w zbiorze, w odpowiedni sposób przedstawiony graficznie.

    Liczby na ogół definiowane są krok po kroku. Rozpoczyna się od liczb naturalnych, następnie rozszerza ich algebrę na liczby całkowite, wymierne, rzeczywiste, zespolone…

    Struktury algebraiczne liczb całkowitych i wymiernych rozszerzają kolejno strukturę liczb naturalnych tak, aby najprostsze działania arytmetyczne dawały się w nich wykonać dla dowolnych dwóch liczb (z wyjątkiem dzielenia przez zero). Działania takie nazywa się działaniami wewnętrznymi danego zbioru liczbowego, gdyż ich wynik zawsze będzie zawarty w tym zbiorze, dlatego mówi się też, że zbiór jest zamknięty ze względu na dane działanie. Kolejne rozszerzenia – na liczby rzeczywiste i zespolone – wzbogacają strukturę algebraiczną o dalsze interesujące właściwości.

    Wartość bezwzględna a. moduł – dla danej liczby rzeczywistej wartość liczbowa nieuwzględniająca znaku liczby. Przykładowo Parser nie mógł rozpoznać (Nie można zapisać obrazu z wzorem w systemie plików.): 5Typ – w językach programowania opis rodzaju, struktury i zakresu wartości, jakie może przyjmować dany literał, zmienna, stała, argument, wynik funkcji lub wartość.
  • Dla liczb naturalnych (z zerem lub bez niego) działaniami wewnętrznymi są np. dodawanie i mnożenie. Dodanie lub pomnożenie przez siebie dwóch liczb naturalnych daje zawsze liczbę naturalną. Dla dodawania i mnożenia można skonstruować działania odwrotne – odejmowanie i dzielenie. Jednak odejmowanie większej liczby od mniejszej nie daje się wykonać w zbiorze liczb naturalnych, odejmowanie nie jest zatem działaniem wewnętrznym tego zbioru. Podobnie jest z dzieleniem.
  • Rozszerzenie liczb naturalnych tak, aby odejmowanie było zawsze wykonalne, daje w rezultacie pierścień liczb całkowitych. Odejmowanie jest już dla nich działaniem wewnętrznym.
  • Powiększenie pierścienia liczb całkowitych tak, aby wykonalne było dzielenie dowolnej liczby całkowitej przez dowolną niezerową liczbę całkowitą, prowadzi do tzw. ciała liczb wymiernych. Jego działaniami wewnętrznymi są dodawanie, odejmowanie, mnożenie oraz dzielenie przez liczbę niezerową.
  • Liczby wymierne nie wyczerpują wszystkich możliwości. Jak już wspomniano wcześniej, przekątna kwadratu o boku jednostkowym ma długość nie dającą się wyrazić liczbą wymierną. Również pole powierzchni koła o promieniu jednostkowym nie daje się wyrazić taką liczbą. Pole to można jednak z dowolną dokładnością przybliżyć, pokrywając koło siatką przystających kwadratów o bokach będących liczbami wymiernymi i zliczając pola kwadratów mieszczących się w całości w tym kole. Następnie powtarzając tę operację dla coraz mniejszych kwadratów można utworzyć ciąg liczb wymiernych coraz lepiej przybliżających pole danego koła. Żądanie, aby dowolna skończona granica ciągu liczb wymiernych dawała się wyrazić liczbowo, prowadzi do rozszerzenia ciała liczb wymiernych do ciała liczb rzeczywistych.
  • Wielomiany w zbiorze liczb rzeczywistych nie zawsze mają pierwiastki rzeczywiste – matematycy mówią, że ciało liczb rzeczywistych nie jest algebraicznie domknięte. Na przykład równanie nie ma w tym zbiorze rozwiązań. Na mocy twierdzenia, iż każde ciało jest podciałem pewnego ciała algebraicznie domkniętego, zbiór liczb rzeczywistych można rozszerzyć tak, aby każdy wielomian stopnia co najmniej pierwszego jednej zmiennej miał pierwiastek w nowym ciele. Powyższa propozycja usprawiedliwia użycie tzw. liczb zespolonych.
  • Zbiory liczbowe można rozszerzać w dalszym stopniu otrzymując tzw. liczby hiperzespolone, w tym: kwaterniony, oktawy Cayleya i sedeniony. Zbiory te mają jednak coraz gorsze właściwości algebraiczne: kwaterniony nie tworzą już ciała, ponieważ mnożenie przestaje być przemienne, a w oktawach mnożenie przestaje być nawet łączne. Mimo wszystko liczby te znajdują swoje zastosowania. Więcej na ten temat znajduje się w artykule aksjomaty i konstrukcje liczb.
  • Odpowiednie własności działań w podstawowych zbiorach liczbowych zostały ujęte w tabeli (niżej legenda, oznaczenia wprowadzono wyłącznie na potrzeby artykułu):

    Liczba π (czytaj: liczba pi), ludolfina – stała matematyczna, która pojawia się w wielu dziedzinach matematyki i fizyki. W geometrii euklidesowej π jest równe stosunkowi długości obwodu koła do długości jego średnicy. Można też zdefiniować π na inne sposoby, na przykład jako pole koła o promieniu równym 1 albo jako najmniejszą dodatnią wartość x, dla której funkcja sinus przyjmuje wartość 0.Linia prosta lub prosta – jedno z podstawowych pojęć geometrii, szczególny przypadek nieograniczonej z obydwu stron krzywej o nieskończonym promieniu krzywizny w każdym punkcie.

    Rodzaje struktur algebraicznych tworzonych przez poszczególne zbiory liczbowe z odpowiednimi działaniami:

  • Dodawanie w zbiorze liczb naturalnych bez zera (jako działaniem łącznym i wewnętrznym) jest przykładem tzw. półgrupy.
  • W zbiorze liczb naturalnych z zerem istnieje dodatkowo element neutralny dodawania (zero), w związku z czym ten zbiór z dodawaniem stanowi tzw. monoid.
  • W zbiorze liczb całkowitych i szerszych, dodawanie jest odwracalne (dla każdego elementu istnieje element taki, że element ten nazywa się elementem przeciwnym do i oznacza przez ). Zatem zbiór liczb całkowitych z dodawaniem tworzy grupę przemienną.
  • Mnożenie we wszystkich tych zbiorach jest łączne, wewnętrzne i ma dokładnie jeden element neutralny, działanie to jednak nie jest odwracalne (zero nie ma elementu odwrotnego). Tworzy więc monoid.
  • Dodawanie i mnożenie razem tworzą w zbiorze liczb naturalnych tzw. półpierścień
  • Zbiór liczb całkowitych z dodawaniem i mnożeniem tworzy dziedzinę całkowitości.
  • Począwszy od liczb wymiernych, zbiory z dodawaniem i mnożeniem razem tworzą już ciało – mnożenie z wyłączeniem zera jest odwracalne.
  • Zbiory liczb wymiernych, rzeczywistych i zespolonych bez zera z mnożeniem tworzą grupę przemienną.
  • Zbiór liczb rzeczywistych tworzy przestrzeń liniową nad ciałem liczb wymiernych.
  • Ciało liczb rzeczywistych (i każde jego podciało) jest ciałem formalnie rzeczywistym, tj. element przeciwny jedynki nie jest sumą kwadratów niezerowych elementów ciała:
  • Ciało liczb rzeczywistych i ciało liczb rzeczywistych algebraicznych są ciałami rzeczywiście domkniętymi:, tj. są ciałami formalnie rzeczywistymi, które nie posiadają rozszerzenia algebraicznego będącego ciałem formalnie rzeczywistym.
  • Zbiór liczb zespolonych tworzy przestrzeń liniową nad ciałem liczb rzeczywistych.
  • Ciało liczb zespolonych i ciało liczb algebraicznych są ciałami algebraicznie domkniętymi, tzn. każdy wielomian stopnia co najmniej pierwszego jednej zmiennej ze współczynnikami w albo ma pierwiastek w odpowiednym ciele. W szczególności istnieje takie, że W ciele liczb zespolonych istnieją dokładnie dwie liczby o tej własności oznaczane oraz
  • Ścisłe definicje liczb[ | edytuj kod]

     Główny artykuł: Aksjomaty i konstrukcje liczb.


    Liczba algebraiczna to liczba rzeczywista (ogólniej zespolona), która jest pierwiastkiem pewnego niezerowego wielomianu o współczynnikach wymiernych (a więc i całkowitych).Wielomian – wyrażenie algebraiczne złożone ze zmiennych i stałych połączonych działaniami dodawania, odejmowania, mnożenia i podnoszenia do potęgi o stałym wykładniku naturalnym.


    Podstrony: [1] 2 [3] [4] [5] [6]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Liczebniki główne potęg tysiąca o wykładniku naturalnym (takie jak tysiąc, milion, miliard i wyższe) są w różnych językach świata tworzone według różnych reguł. Dwa najbardziej rozpowszechnione systemy takich liczebników to długa skala (fr. échelle longue) i krótka skala (fr. échelle courte). Systemy te posługują się analogicznymi (różniącymi się jedynie ortografią) nazwami w odniesieniu do różnych liczb. Na przykład słowo bilion, które w Polsce i w większości krajów europejskich oznacza milion milionów (10), w krajach anglojęzycznych (ang. billion) określa tysiąc milionów (10). Wybór długiej lub krótkiej skali zależy od kraju, języka, a nawet dziedziny zastosowania danego liczebnika; bywało też, że władze decydowały o zmianie obowiązującej w danym państwie skali.
    Łączność – jedna z własności działań dwuargumentowych, czyli np. operatorów arytmetycznych. Pojęcie to występuje w dwóch znaczeniach.
    Komputer osobisty (ang. personal computer) – mikrokomputer przeznaczony przede wszystkim do użytku osobistego w domu i biurze. Służy głównie do uruchamiania oprogramowania biurowego, dostępu do zasobów Internetu, prezentacji treści multimedialnych (tekst, obrazy, dźwięki, filmy i inne), jak i gier.
    Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.
    Półbajt (ang. nibble, nybble) – połowa bajtu. Przy najczęściej spotykanym bajcie ośmiobitowym (oktecie), półbajt ma długość 4 bitów, czyli może przybierać jedną z 16 różnych wartości. Pozwala to na zapisanie pojedynczej cyfry z szesnastkowego systemu liczbowego, co przedstawia poniższa tabela.
    Mechanika kwantowa (teoria kwantów) – teoria praw ruchu obiektów świata mikroskopowego. Poszerza zakres mechaniki na odległości czasoprzestrzenne i energie, dla których przewidywania mechaniki klasycznej nie sprawdzały się. Opisuje przede wszystkim obiekty o bardzo małych masach i rozmiarach - np. atom, cząstki elementarne itp. Jej granicą dla średnich rozmiarów lub średnich energii czy pędów jest mechanika klasyczna.
    Tessariny, tessaryny (ang. tessarines, bicomplex numbers – liczby dwuzespolone) to w matematyce grupa liczb hiperrzeczywistych o postaci

    Reklama

    Czas generowania strony: 0.08 sek.