• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Kwantowa teoria pola

    Przeczytaj także...
    Szczególna teoria względności (STW) – teoria fizyczna stworzona przez Alberta Einsteina w 1905 roku. Zmieniła ona sposób pojmowania czasu i przestrzeni opisane wcześniej w newtonowskiej mechanice klasycznej. Teoria pozwoliła usunąć trudności interpretacyjne i sprzeczności pojawiające się na styku mechaniki (zwanej obecnie klasyczną) i elektromagnetyzmu po ogłoszeniu przez Jamesa Clerka Maxwella teorii elektromagnetyzmu.Mechanika kwantowa (teoria kwantów) – teoria praw ruchu obiektów świata mikroskopowego. Poszerza zakres mechaniki na odległości czasoprzestrzenne i energie, dla których przewidywania mechaniki klasycznej nie sprawdzały się. Opisuje przede wszystkim obiekty o bardzo małych masach i rozmiarach - np. atom, cząstki elementarne itp. Jej granicą dla średnich rozmiarów lub średnich energii czy pędów jest mechanika klasyczna.
    Przestrzeń Hilberta – w analizie funkcjonalnej rzeczywista lub zespolona przestrzeń unitarna (tj. przestrzeń liniowa nad ciałem liczb rzeczywistych lub zespolonych z abstrakcyjnym iloczynem skalarnym), zupełna ze względu na indukowaną (poprzez normę) z iloczynu skalarnego tej przestrzeni metrykę. Jako unormowana i zupełna, każda przestrzeń Hilberta jest przestrzenią Banacha, a przez to przestrzenią Frécheta, a stąd lokalnie wypukłą przestrzenią liniowo-topologiczną. Przestrzenie te noszą nazwisko Davida Hilberta, który wprowadził je pod koniec XIX wieku; są one podstawowym narzędziem wykorzystywanym w wielu dziedzinach fizyki, m.in. w mechanice kwantowej (np. przestrzeń Foka nad przestrzenią Hilberta).

    Teorie pól kwantowych (ang. QFT – Quantum Field Theory) – współczesne teorie fizyczne tłumaczące oddziaływania podstawowe. Są one rozwinięciem mechaniki kwantowej zapewniającym jej zgodność ze szczególną teorią względności. QFT w odróżnieniu od pierwotnej relatywistycznej mechaniki kwantowej uwzględnia zjawiska, w których zmienia się liczba cząstek elementranych w czasie: kreacja par, anihilacja czy absorpcja.

    Teoria pola (fizyka), dział fizyki wypracowujący metody badania oraz badajaca pola fizyczne, czyli obszary w których występują zjawiska fizyczne. Fizycy matematyzując problem opisują te zjawiska poprzez przypisanie każdemu punktowi przestrzeni matematycznego obiektu, co odpowiada określeniu pewnej funkcji na przestrzeni, w której występuje pole.Supersymetria (SUSY) – hipotetyczna symetria z zakresu fizyki cząstek elementarnych przekształcająca bozony w fermiony.

    Aparatem matematycznym teorii pól kwantowych jest, tak samo jak w mechanice kwantowej, rachunek operatorów w przestrzeni Hilberta. Wielkości fizyczne wyraża się za pomocą specjalnych obiektów operatorowych zwanych polami, a będących dystrybucjami o wartościach operatorowych zależnymi od punktu czasoprzestrzeni.

    Teorie wielkiej unifikacji (GUT z ang. Grand Unification Theory) – teorie łączące chromodynamikę kwantową i teorię oddziaływań elektrosłabych. Przedstawiają one oddziaływanie silne, słabe i elektromagnetyczne jako przejaw jednego, zunifikowanego oddziaływania. Żadna z dotychczasowych teorii wielkiej unifikacji nie została potwierdzona doświadczalnie.Teoria fizyczna – zbiór twierdzeń obejmujący aksjomaty oraz wyprowadzone z nich twierdzenia spójnie opisujące językiem matematycznym obszary rzeczywistości fizycznej zgodne z wynikami pomiarów gromadzonych wcześniej doświadczeń i obserwacji.

    Pola mogą opisywać abstrakcyjne wielkości fizyczne, ale także całe cząstki lub układy cząstek łącznie z ich oddziaływaniami. Ogólnie, jeżeli pole kwantowe spełnia równanie pola, to opisuje cząstkę fizyczną. Istnieje związek pola kwantowego z funkcją falową (funkcja falowa jest równa elementowi macierzowemu pola kwantowego pomiędzy stanem próżni a stanem jedno-cząstkowym).

    Cząstka (korpuskuła) – w tradycyjnym znaczeniu, to każdy fragment materii, który ma kształt mniej lub bardziej zbliżony do sfery i jest na tyle mały, że nie można go zobaczyć gołym okiem. W tym określeniu informacja o kształcie nie dotyczy cząstek elementarnych (zob. fizyka cząstek elementarnych), w przypadku których nie ma żadnego sensu mówić o ich kształcie, gdyż ich "zachowanie" trudno jest sobie wyobrażać w kategoriach makroskopowych wyobrażeń zmysłowych.Steven Weinberg (ur. 3 maja 1933 w Nowym Jorku) – amerykański fizyk teoretyk, laureat Nagrody Nobla. Jest najbardziej znany ze swej teorii unifikującej dwa oddziaływania: słabe i elektromagnetyczne.

    Najważniejszym narzędziem teorii pól kwantowych są symetrie, czyli przekształcenia, które pozostawiają niezmienione pola lub układy pól. Podając grupę symetrii zachowywanej przez pole, można podać wszystkie własności opisywanej przez nie cząstki i charakter oddziaływań, w których uczestniczy.

    Wielkość fizyczna – właściwość fizyczna ciała lub zjawiska, którą można określić ilościowo, czyli zmierzyć.Teoria oddziaływań elektrosłabych (Teoria Małej Unifikacji) – kwantowa teoria pola opisująca oddziaływania słabe oraz elektromagnetyczne. Zawiera ona w sobie wcześniejszą teorię oddziaływań słabych i elektrodynamikę kwantową.

    Przykładami teorii pól kwantowych są: elektrodynamika kwantowa, teoria oddziaływań elektrosłabych, chromodynamika kwantowa, model standardowy, teorie wielkiej unifikacji, teorie strun, supersymetria.

    Przypisy

    1. Albert Messiah: Quantum Mechanics, Tom 2. Elsevier, 1965, s. 875-876. ISBN 0720400457.

    Bibliografia[edytuj kod]

  • Steven Weinberg: Teoria pól kwantowych. Podstawy. Warszawa: Wydawnictwo Naukowe PWN, 1999. ISBN 83-01-12615-9.



  • w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Równanie pola w fizyce jest to równanie, które musi spełniać pole fizyczne aby opisywało sytuację fizycznie możliwą. Pola spełniające równania polowe nazywa się często polami fizycznymi a pola ich niespełniające – polami niefizycznymi.
    Teoria superstrun – wersja teorii strun, która łączy ją z supersymetrią. Wersja teorii superstrun, M-teoria, jest jedną z proponowanych teorii wszystkiego. M-teoria przewiduje, że teoria superstrun opisuje tylko część rzeczywistości.
    Oddziaływania podstawowe (fundamentalne) – oddziaływania fizyczne obserwowane w przyrodzie, nie dające się sprowadzić do innych oddziaływań.
    Czasoprzestrzeń – zbiór zdarzeń zlokalizowanych w przestrzeni i czasie, wyposażony w strukturę afiniczną i metryczną o określonej postaci, w zależności od analizowanego modelu fizycznej czasoprzestrzeni.
    Chromodynamika kwantowa (ang. QCD – quantum chromodynamics) – teoria oddziaływań silnych czyli kwantowa teoria pola opisująca oddziaływanie silne, najsilniejsze z oddziaływań podstawowych. Chromodynamika to nieabelowa (nieprzemienna) teoria z cechowaniem. Grupą cechowania jest grupa SU(3). Jest częścią Modelu Standardowego. Trwają próby połączenia grupy SU(3) z grupą SU(2) x U(1) teorii oddziaływań elektrosłabych. Nazywa się to teoriami wielkiej unifikacji.
    Elektrodynamika kwantowa (ang. QED – Quantum ElectroDynamics) jest to kwantowa teoria pola opisująca oddziaływanie elektromagnetyczne. Jest ona kwantowym uogólnieniem elektrodynamiki klasycznej. Elektrodynamika kwantowa wyjaśnia takie zjawiska jak rozszczepianie poziomów energetycznych atomu w polach elektrycznych i magnetycznych oraz zwiększanie się wówczas liczby linii widmowych.
    Teoria dystrybucji – dział matematyki leżący na pograniczu analizy funkcjonalnej i teorii funkcji rzeczywistych powstały w XX wieku, głównie za sprawą prac francuskiego matematyka Laurenta Schwartza. Zasadniczą ideą tej teorii jest pewne uogólnienie pojęcia funkcji (rzeczywistej) nazywane właśnie dystrybucją, które z punktu widzenia wyjściowej teorii nie ma własności przynależnych dobrze określonym funkcjom (np. na ogół dystrybucje nie mają „wartości w punkcie”), to z drugiej strony mają one doskonałe własności analityczne, m.in. mają pochodne dowolnego rzędu. Operowanie tego rodzaju obiektami odbiega od klasycznego, częstokroć korzysta się z transformaty Fouriera, czy splotu. Metody dystrybucyjne znajdują zastosowanie w teorii równań różniczkowych dając opis uogólnionych ich rozwiązań; dzięki temu doskonale nadają się one do opisu wielu skomplikowanych układów fizycznych.

    Reklama