• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Kwadratrysa

    Przeczytaj także...
    Hippiasz (gr. Ἱππίας Hippias; V–IV w. p.n.e.) – urodzony w Elidzie erudyta, poeta, polityk, technik i rzemieślnik, sławny w starożytności sofista. Należał do tzw. nurtu naturalistycznego w sofizmie, przeciwstawiającym ludzkie prawo, naturze. Platon zatytułował dwa ze swych dialogów jego imieniem. Uważał, że wie wszystko.Układ współrzędnych biegunowych (układ współrzędnych polarnych) - układ współrzędnych na płaszczyźnie wyznaczony przez pewien punkt O zwany biegunem oraz półprostą OS o początku w punkcie O zwaną osią biegunową.
    Kwadratura koła – problem polegający na skonstruowaniu kwadratu, którego pole równe jest polu danego koła przy użyciu wyłącznie cyrkla i linijki bez podziałki. Jest to jeden z trzech wielkich problemów starożytnej matematyki greckiej (obok trysekcji kąta i podwojenia sześcianu), sformułowany przez szkołę pitagorejską.
    Konstrukcja kwadratrysy

    Kwadratrysa – rodzaj kinematycznie konstruowanej krzywej, która pierwszy raz została wprowadzona do greckiej geometrii przez Hippiasza z Elidy. Jest to krzywa płaska powstała z punktów przecięcia (zbiór punktów przecięcia) dwóch boków kwadratu przesuwanych ruchem jednostajnym w takim samym odstępie czasu w kierunku boku trzeciego, przy czym jeden z nich porusza się ze stałą prędkością kątową, drugi zaś – ze stałą prędkością liniową.

    Rektyfikacja okręgu czyli wyprostowanie okręgu – zadanie polegające na skonstruowaniu przy użyciu cyrkla i linijki bez podziałki, odcinka, którego długość jest równa obwodowi danego okręgu. Konstrukcja ta jest niewykonalna, co wynika z faktu, iż π jest liczbą przestępną. Znanych jest wiele konstrukcji przybliżonych, jedna z nich została podana w 1685 roku przez nadwornego matematyka króla Jana III Sobieskiego, Adama Adamandego Kochańskiego.Układ współrzędnych kartezjańskich (prostokątny) – prostoliniowy układ współrzędnych o parach prostopadłych osi. Nazwa pojęcia pochodzi od łacińskiego nazwiska francuskiego matematyka i filozofa Kartezjusza (wł. René Descartes), który wprowadził te idee w 1637 w traktacie La Géométrie, (wcześniej układ taki stosował, choć nie rozpropagował go, Pierre de Fermat).

    Krzywa ta przez Hippiasza została użyta w 420 r. p.n.e. do rozwiązania problemu trysekcji kąta i przy użyciu kwadratrysy możliwy jest taki podział dla dowolnego kąta. Została także zastosowana do rozwiązania problemów kwadratury koła i rektyfikacji okręgu.

    Równania kwadratrysy[]

  • we współrzędnych biegunowych:
  • ,
  • we współrzędnych prostokątnych (kartezjańskich):
  • ,

    gdzie: – długość boku kwadratu.

    Trysekcja kąta – jeden z trzech (obok podwojenia sześcianu i kwadratury koła) wielkich problemów matematyki greckiej. Polega on na podziale kąta na trzy równe części jedynie przy użyciu cyrkla i liniału. W roku 1837 Pierre Wantzel udowodnił, że konstrukcja taka w ogólnym przypadku jest niewykonalna. Posługując się narzędziami teorii Galois można wykazać, że dla danego kąta φ {displaystyle varphi } kąt o mierze 1 3 φ {displaystyle { frac {1}{3}}varphi } jest konstruowalny wtedy i tylko wtedy, gdy wielomian

    Zobacz też[]

  • lista krzywych
  • Bibliografia[]

  • Włodzimierz Krysicki, Helena Pisarewska, Tadeusz Świątkowski: Z geometrią za pan brat. Warszawa: Iskry, 1992, s. 18-21, 27 i 28. ISBN 83-207-1227-0.
  • Encyklopedia PWN – Wirtualna Polska.
  • (window.RLQ=window.RLQ||).push(function(){mw.log.warn("Gadget \"edit-summary-warning\" styles loaded twice. Migrate to type=general. See \u003Chttps://phabricator.wikimedia.org/T42284\u003E.");mw.log.warn("Gadget \"wikibugs\" styles loaded twice. Migrate to type=general. See \u003Chttps://phabricator.wikimedia.org/T42284\u003E.");mw.log.warn("Gadget \"ReferenceTooltips\" styles loaded twice. Migrate to type=general. See \u003Chttps://phabricator.wikimedia.org/T42284\u003E.");mw.log.warn("Gadget \"main-page\" styles loaded twice. Migrate to type=general. See \u003Chttps://phabricator.wikimedia.org/T42284\u003E.");});



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Reklama