• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Krzywa stożkowa



    Podstrony: 1 [2] [3]
    Przeczytaj także...
    Prostopadłość – cecha geometryczna dwóch prostych lub płaszczyzn (albo prostej i płaszczyzny), które tworzą przystające kąty przyległe.Linia prosta lub prosta – jedno z podstawowych pojęć geometrii, szczególny przypadek nieograniczonej z obydwu stron krzywej o nieskończonym promieniu krzywizny w każdym punkcie.

    Krzywa stożkowazbiór punktów przecięcia płaszczyzny i powierzchni stożkowej, której kierującą jest okrąg. Krzywe stożkowe są krzywymi drugiego stopnia, tzn. można je w kartezjańskim układzie współrzędnych opisać równaniem algebraicznym drugiego stopnia względem obu zmiennych i .

    Tworząca stożka – odcinek łączący dowolny punkt na brzegu podstawy stożka z jego wierzchołkiem (dla stożka prostego i pochyłego) lub najbliższym punktem na brzegu drugiej podstawy (dla stożka ściętego).Okrąg – brzeg koła; zbiór wszystkich punktów płaszczyzny euklidesowej odległych od ustalonego punktu, nazywanego środkiem, o zadaną odległość, nazywaną promieniem.

    Stożkowe są niezmiennikami przekształcenia rzutowego i stąd grają pewną rolę w geometrii rzutowej. Typ stożkowej może się przy tym zmieniać, stożkowe można w tym sensie uznać za rzuty okręgu na płaszczyznę.

    Spis treści

  • 1 Rys historyczny
  • 2 Rodzaje krzywych stożkowych
  • 3 Równanie
  • 4 Zobacz też
  • Mimośród a. ekscentryczność – parametr związany z każdą krzywą stożkową; można o nim myśleć jako mierze odchylenia danej krzywej od okręgu.Układ współrzędnych biegunowych (układ współrzędnych polarnych) - układ współrzędnych na płaszczyźnie wyznaczony przez pewien punkt O zwany biegunem oraz półprostą OS o początku w punkcie O zwaną osią biegunową.


    Podstrony: 1 [2] [3]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Przekształcenie rzutowe (również transformacja rzutowa) - w geometrii rzutowej jest to funkcja wzajemnie jednoznaczna przeprowadzająca przestrzeń rzutową na siebie i zachowująca współliniowość punktów.
    Płaszczyzna – jedno z podstawowych pojęć pierwotnych geometrii Euklidesa i geometrii absolutnej. W niektórych innych aksjomatyzacjach geometrii, na przykład w geometrii analitycznej, płaszczyzna nie jest pojęciem pierwotnym, lecz zbiorem punktów.
    Apoloniusz z Pergi (gr. Ἀπολλώνιος ὁ Περγαῖος Apollonios ho Pergaios) – żyjący w III wieku p.n.e. (ok. 260 p.n.e. – ok. 190 p.n.e.) matematyk i astronom grecki.
    Elipsa – w geometrii ograniczony przypadek krzywej stożkowej, czyli krzywej będącej częścią wspólną powierzchni stożkowej oraz przecinającej ją płaszczyzny. Jest to również miejsce geometryczne wszystkich tych punktów płaszczyzny, dla których suma odległości od dwóch ustalonych punktów jest stałą.
    Równanie algebraiczne – równanie w postaci W(x) = 0, gdzie W(x) jest wielomianem stopnia n jednej lub wielu zmiennych (n ≥ 0). Więc równanie algebraiczne jednej zmiennej to równanie w postaci
    Elipsa – w geometrii ograniczony przypadek krzywej stożkowej, czyli krzywej będącej częścią wspólną powierzchni stożkowej oraz przecinającej ją płaszczyzny. Jest to również miejsce geometryczne wszystkich tych punktów płaszczyzny, dla których suma odległości od dwóch ustalonych punktów jest stałą.
    Geometria rzutowa to dział matematyki zajmujący się badaniem własności figur geometrycznych, które nie zmieniają się przy przekształceniach rzutowych. Do najważniejszych pojęć geometrii rzutowej należą: prosta, płaszczyzna oraz dwustosunek czwórki punktów. Twórcą geometrii rzutowej był francuski matematyk Jean-Victor Poncelet, który jej podstawy podał w 1822.

    Reklama

    Czas generowania strony: 0.024 sek.