• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Krzywa



    Podstrony: [1] 2 [3]
    Przeczytaj także...
    Continuum - w topologii ogólnej, niepusta przestrzeń topologiczna, która jest zarazem zwarta i spójna. Teoria continuów jest gałęzią topologii zajmującą się studiowaniem własności continuów i odwzorowań między nimi. Continua dzieli się zasadniczo na dwie klasy:Brzeg – pojęcie topologiczno-geometryczne oddające i formalizujące intuicję punktów „granicznych” danego zbioru, czy figury, czy też „ograniczających” je.
    Definicje formalne[]

    Definicje historycznie odleglejsze[]

  • Komentatorzy Euklidesa określali ją jako „długość bez szerokości” oraz „ograniczenie powierzchni”. Nie są to jednak definicje w sensie matematycznym.
  • Kartezjusz definiował krzywą jako zbiór punktów spełniających pewne równanie. Definicja ta nie obejmuje jednak wszystkich przypadków.
  • Kolejna definicja określała krzywą jako sumę skończonej liczby łuków, z których żadne dwa nie mają wspólnych punktów oprócz swych końców. Okazało się jednak, że definicja ta nie obejmuje niektórych przypadków, np.
  • z dołączonym odcinkiem .

    Definicje topologiczne[]

    Szereg definicji topologicznych używa pojęcia continuum (kontinuum), czyli przestrzeni zwartej i spójnej.

    Definicja (z łac. definitio; od czas. definire: de + finire, "do końca, granicy"; od finis: granica, koniec) – wypowiedź o określonej budowie, w której informuje się o znaczeniu pewnego wyrażenia przez wskazanie innego wyrażenia należącego do danego języka i posiadającego to samo znaczenie.Linia prosta lub prosta – jedno z podstawowych pojęć geometrii, szczególny przypadek nieograniczonej z obydwu stron krzywej o nieskończonym promieniu krzywizny w każdym punkcie.
  • Camille Jordan w XIX wieku zdefiniował krzywą jako zbiór punktów płaszczyzny , gdzie i funkcjami ciągłymi, zaś jest parametrem przebiegającym przedział liczb rzeczywistych. Innymi słowy krzywa to obraz przedziału (równoważnie: odcinka) w odwzorowaniu ciągłym. Okazało się wszakże, że definicja ta jest zbyt szeroka. W 1890 roku Giuseppe Peano pokazał, że obraz tak rozumianej krzywej może wypełniać kwadrat wraz z wnętrzem (tzw. krzywa Peano). Obecnie krzywą Jordana nazywa się homeomorficzny obraz okręgu.
  • Pod koniec XIX wieku Georg Cantor podał następującą definicję: krzywa płaska to takie continuum na płaszczyźnie, które nie zawiera żadnego koła o dodatnim promieniu. W przypadku płaszczyzny jest ona równoważna przytoczonej niżej definicji podanej przez Urysohna.
  • Krzywą nazywa się continuum o wymiarze 1. Innymi słowy jest to zbiór, w którym każdy jego punkt ma dowolnie małe otoczenia o zerowymiarowym brzegu. Jest to wtedy zbiór zwarty i spójny.
  • Krzywą nazywamy continuum, w którym dla każdego jego punktu i dowolnego jego otoczenia istnieje pewne otoczenie wspomnianego punktu zawarte w poprzednim, którego brzeg nie zawiera żadnego continuum złożonego z więcej niż jednego punktu. Definicja ta, sformułowana przez rosyjskiego matematyka Pawła Urysohna, pochodzi z końca lat 20. XX wieku.
  • Często przez krzywą rozumie się homeomorficzny obraz odcinka (domkniętego lub otwartego).
  • Definicje geometryczne[]

    W przypadku geometrii różniczkowej definicje krzywej, jako obrazu odcinka otwartego przy odwzorowaniach różniczkowych, zakładają zawsze, że pierwsza pochodna jest różna od zera w każdym punkcie odcinka.

    Droga – w topologii, ciągłe przekształcenie z przedziału jednostkowego w przestrzeń topologiczną. Pętlą nazywa się drogę, której początek i koniec pokrywają się. Ich parametr, szczególnie przy homotopiach, nazywa się niekiedy czasem.Przestrzeń trójwymiarowa - potoczna nazwa przestrzeni euklidesowej o trzech wymiarach, lub równoważnej jej przestrzeni kartezjańskiej. Przymiotnik "trójwymiarowa" oznacza, że każdemu punktowi tej przestrzeni odpowiada trójka uporządkowana liczb rzeczywistych, zwanych współrzędnymi. Każdej trójce liczb rzeczywistych także odpowiada punkt tej przestrzeni.
  • Ważne klasy krzywych definiuje się nakładając dodatkowe warunki na funkcję , odwzorowującą przedział w płaszczyznę, na przykład dla funkcji różniczkowalnych otrzymuje się łuk regularny, a dla przedziałami liniowychlinię łamaną.
  • W geometrii różniczkowej płaszczyzny lub przestrzeni przez krzywą rozumie się na ogół odwzorowanie razy różniczkowalne przedziału otwartego na płaszczyznę lub , gdzie -ta pochodna jest ciągła (tak zwane krzywe klasy ). Często, aby uniknąć dyskusji o klasie gładkości zakłada się, że funkcje te mają wszystkie pochodne (tak zwane krzywe klasy ; oczywiście wtedy wszystkie pochodne są ciągłe). Obrazy tych funkcji nie są wtedy zwarte. .
  • Zobacz też[]

  • lista krzywych
  • łamana
  • krzywa stożkowa
  • krzywizna krzywej
  • krzywa regularna
  • krzywa Béziera
  • wzory Freneta
  • droga
  • kąt między dwiema krzywymi
  • Kątem przecięcia się dwóch krzywych gładkich ( f(x) i g(x) ) nazywamy kąt ostry przecięcia się stycznych do danych krzywych w punkcie x0. Tangens tego kąta dla wykresów dwóch funkcji gładkich możemy obliczyć ze wzoru:Linia łamana (polilinia, linia poligonowa, linia wielokątna lub krótko łamana) to w geometrii linia utworzona z ciągu odcinków (zwanych jej bokami) w taki sposób, że


    Podstrony: [1] 2 [3]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Topologia (gr. tópos – miejsce, okolica; lógos – słowo, nauka) – jeden z najważniejszych kierunków w matematyce współczesnej. Obiektem jej badań są te własności figur geometrycznych i brył, które nie ulegają zmianie nawet po radykalnym zdeformowaniu tych figur (a więc np. położenie i sąsiedztwo). Własności takie nazywa się własnościami topologicznymi figury.
    Kartezjusz (fr. René Descartes, łac. Renatus Cartesius, ur. 31 marca 1596 w La Haye-en-Touraine w Turenii, zm. 11 lutego 1650 w Sztokholmie) – francuski filozof, matematyk i fizyk, jeden z najwybitniejszych uczonych XVII wieku, uważany za prekursora nowożytnej kultury umysłowej.
    Płaszczyzna – jedno z podstawowych pojęć pierwotnych geometrii Euklidesa i geometrii absolutnej. W niektórych innych aksjomatyzacjach geometrii, na przykład w geometrii analitycznej, płaszczyzna nie jest pojęciem pierwotnym, lecz zbiorem punktów.
    Funkcja przedziałami liniowa – funkcja zmiennej rzeczywistej, której dziedzina daje się rozbić na sumę rozłącznych przedziałów w ten sposób, że w każdym z nich funkcja jest liniowa.
    Przedział – zbiór elementów danego zbioru częściowo uporządkowanego, zawartych między dwoma ustalonymi elementami tego zbioru, nazywanymi początkiem i końcem przedziału.
    Euklides z Aleksandrii (gr. Εὐκλείδης, Eukleides, ur. ok. 365 r. p.n.e., zm. ok. 300 r. p.n.e.) – matematyk grecki pochodzący z Aten, przez większość życia działający w Aleksandrii.
    Funkcja ciągła – funkcja o następującej intuicyjnej własności: „mała” zmiana argumentu niesie ze sobą „małą” zmianę wartości; lub też: wartości funkcji dla „bliskich” sobie argumentów również będą sobie „bliskie”.

    Reklama

    Czas generowania strony: 0.042 sek.