Krzywa

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania
Parabola – prosty przykład krzywej.

Krzywa – uogólnienie linii prostej. Mimo intuicyjnej prostoty, pojęcie krzywej okazało się bardzo trudne do ścisłego zdefiniowania. Poprawna definicja powinna obejmować „dowolną linię” (w szczególności na płaszczyźnie lub przestrzeni trójwymiarowej), w tym także linię prostą, która mogłaby się rozgałęziać i przerywać.

Definicja (z łac. definitio; od czas. definire: de + finire, "do końca, granicy"; od finis: granica, koniec) – wypowiedź o określonej budowie, w której informuje się o znaczeniu pewnego wyrażenia przez wskazanie innego wyrażenia należącego do danego języka i posiadającego to samo znaczenie.Linia prosta lub prosta – jedno z podstawowych pojęć geometrii, szczególny przypadek nieograniczonej z obydwu stron krzywej o nieskończonym promieniu krzywizny w każdym punkcie.

Definicje formalne[ | edytuj kod]

Definicje historycznie odleglejsze[ | edytuj kod]

  • Komentatorzy Euklidesa określali krzywą jako „długość bez szerokości” oraz „ograniczenie powierzchni”. Nie są to jednak definicje w sensie matematycznym.
  • Kartezjusz definiował krzywą jako zbiór punktów spełniających pewne równanie. Definicja ta nie obejmuje jednak wszystkich przypadków.
  • Kolejna definicja określała krzywą jako sumę skończonej liczby łuków, z których żadne dwa nie mają wspólnych punktów oprócz swych końców. Okazało się jednak, że definicja ta nie obejmuje niektórych przypadków, np.
  • z dołączonym odcinkiem

    Definicje topologiczne[ | edytuj kod]

    Szereg definicji topologicznych używa pojęcia continuum (kontinuum), czyli przestrzeni zwartej i spójnej.

    Droga – w topologii, ciągłe przekształcenie z przedziału jednostkowego w przestrzeń topologiczną. Pętlą nazywa się drogę, której początek i koniec pokrywają się. Ich parametr, szczególnie przy homotopiach, nazywa się niekiedy czasem.Przestrzeń trójwymiarowa - potoczna nazwa przestrzeni euklidesowej o trzech wymiarach, lub równoważnej jej przestrzeni kartezjańskiej. Przymiotnik "trójwymiarowa" oznacza, że każdemu punktowi tej przestrzeni odpowiada trójka uporządkowana liczb rzeczywistych, zwanych współrzędnymi. Każdej trójce liczb rzeczywistych także odpowiada punkt tej przestrzeni.
  • Camille Jordan w XIX wieku zdefiniował krzywą jako zbiór punktów płaszczyzny gdzie i funkcjami ciągłymi, zaś jest parametrem przebiegającym przedział liczb rzeczywistych. Innymi słowy krzywa to obraz przedziału (równoważnie: odcinka) w odwzorowaniu ciągłym. Okazało się wszakże, że definicja ta jest zbyt szeroka. W 1890 roku Giuseppe Peano pokazał, że obraz tak rozumianej krzywej może wypełniać kwadrat wraz z wnętrzem (tzw. krzywa Peana). Obecnie krzywą Jordana nazywa się homeomorficzny obraz okręgu.
  • Pod koniec XIX wieku Georg Cantor podał następującą definicję: krzywa płaska to takie continuum na płaszczyźnie, które nie zawiera żadnego koła o dodatnim promieniu. W przypadku płaszczyzny jest ona równoważna przytoczonej niżej definicji podanej przez Urysohna.
  • Krzywą nazywa się continuum o wymiarze 1. Innymi słowy jest to zbiór, w którym każdy jego punkt ma dowolnie małe otoczenia o zerowymiarowym brzegu. Jest to wtedy zbiór zwarty i spójny.
  • Krzywą nazywamy continuum, w którym dla każdego jego punktu i dowolnego jego otoczenia istnieje pewne otoczenie wspomnianego punktu zawarte w poprzednim, którego brzeg nie zawiera żadnego continuum złożonego z więcej niż jednego punktu. Definicja ta, sformułowana przez rosyjskiego matematyka Pawła Urysohna, pochodzi z końca lat 20. XX wieku.
  • Często przez krzywą rozumie się homeomorficzny obraz odcinka (domkniętego lub otwartego).
  • Definicje geometryczne[ | edytuj kod]

    W przypadku geometrii różniczkowej definicje krzywej, jako obrazu odcinka otwartego przy odwzorowaniach różniczkowych, zakładają zawsze, że pierwsza pochodna jest różna od zera w każdym punkcie odcinka.

    Kątem przecięcia się dwóch krzywych gładkich ( f(x) i g(x) ) nazywamy kąt ostry przecięcia się stycznych do danych krzywych w punkcie x0. Tangens tego kąta dla wykresów dwóch funkcji gładkich możemy obliczyć ze wzoru:Linia łamana (polilinia, linia poligonowa, linia wielokątna lub krótko łamana) to w geometrii linia utworzona z ciągu odcinków (zwanych jej bokami) w taki sposób, że
  • Ważne klasy krzywych definiuje się, nakładając dodatkowe warunki na funkcję odwzorowującą przedział w płaszczyznę, na przykład dla funkcji różniczkowalnych otrzymuje się łuk regularny, a dla przedziałami liniowychlinię łamaną.
  • W geometrii różniczkowej płaszczyzny lub przestrzeni przez krzywą rozumie się na ogół odwzorowanie razy różniczkowalne przedziału otwartego na płaszczyznę lub gdzie -ta pochodna jest ciągła (tak zwane krzywe klasy ). Często, aby uniknąć dyskusji o klasie gładkości zakłada się, że funkcje te mają wszystkie pochodne (tak zwane krzywe klasy oczywiście wtedy wszystkie pochodne są ciągłe). Obrazy tych funkcji nie są wtedy zwarte.
  • Zobacz też[ | edytuj kod]

  • droga
  • kąt między dwiema krzywymi
  • krzywa Béziera
  • krzywa regularna
  • krzywa stożkowa
  • krzywizna krzywej
  • lista krzywych
  • łamana
  • wzory Freneta
  • Przypisy[ | edytuj kod]

    1. Krzywa, [w:] Encyklopedia PWN [online] [dostęp 2021-07-30].
    2. Jacek Gancarzewicz, Barbara Opozda: Wstęp do geometrii różniczkowej. Kraków: Wydawnictwo UJ, 2003, s. 11. ISBN 83-233-1768-2.
    Topologia (gr. tópos – miejsce, okolica; lógos – słowo, nauka) – jeden z najważniejszych kierunków w matematyce współczesnej. Obiektem jej badań są te własności figur geometrycznych i brył, które nie ulegają zmianie nawet po radykalnym zdeformowaniu tych figur (a więc np. położenie i sąsiedztwo). Własności takie nazywa się własnościami topologicznymi figury.Płaszczyzna – jedno z podstawowych pojęć pierwotnych geometrii Euklidesa i geometrii absolutnej. W niektórych innych aksjomatyzacjach geometrii, na przykład w geometrii analitycznej, płaszczyzna nie jest pojęciem pierwotnym, lecz zbiorem punktów.




    Warto wiedzieć że... beta

    Library of Congress Control Number (LCCN) – numer nadawany elementom skatalogowanym przez Bibliotekę Kongresu wykorzystywany przez amerykańskie biblioteki do wyszukiwania rekordów bibliograficznych w bazach danych i zamawiania kart katalogowych w Bibliotece Kongresu lub u innych komercyjnych dostawców.
    Funkcja przedziałami liniowa – funkcja zmiennej rzeczywistej, której dziedzina daje się rozbić na sumę rozłącznych przedziałów w ten sposób, że w każdym z nich funkcja jest liniowa.
    Przedział – zbiór elementów danego zbioru częściowo uporządkowanego, zawartych między dwoma ustalonymi elementami tego zbioru, nazywanymi początkiem i końcem przedziału.
    Euklides z Aleksandrii (gr. Εὐκλείδης, Eukleides, ur. ok. 365 r. p.n.e., zm. ok. 300 r. p.n.e.) – matematyk grecki pochodzący z Aten, przez większość życia działający w Aleksandrii.
    Funkcja ciągła – funkcja o następującej intuicyjnej własności: „mała” zmiana argumentu niesie ze sobą „małą” zmianę wartości; lub też: wartości funkcji dla „bliskich” sobie argumentów również będą sobie „bliskie”.
    Biblioteka Narodowa Francji (fr. Bibliothèque nationale de France, BnF) – francuska biblioteka narodowa, znajdująca się w Paryżu. Przewidziana jest jako repozytorium dla wszystkich materiałów bibliotecznych, wydawanych we Francji. Obecnym dyrektorem Biblioteki jest Bruno Racine.
    Store Norske leksikon (Wielka encyklopedia norweska) - norweska encyklopedia w języku bokmål. Powstała po fuzji dwóch dużych, tworzących encyklopedie i słowniki wydawnictw norweskich Aschehoug i Gyldendal w 1978 roku, które utworzyły wydawnictwo Kunnskapsforlaget. Były cztery wydania papierowe: pierwsza w latach 1978-1981 w 12 tomach, druga w latach 1986-1989 w 15 tomach, trzecia w latach 1995-1999 w 16 tomach i czwarta w latach 2005-2007 w 16 tomach. Ostatnie wydanie zawierało 150 tys. haseł i 16 tys. ilustracji i zostało opublikowana przy wsparciu finansowym stowarzyszenia Fritt Ord. W 2010 roku ogłoszono, że nie będzie już wydań papierowych encyklopedii. Encyklopedia dostępna jest on-line od 2000 roku, a od 2009 roku może być edytowane przez użytkowników. Kunnskapsforlaget korzysta jednak z pomocy ekspertów przy sprawdzaniu treści zamieszczonych przez czytelników.

    Reklama