Krzywa
Przeczytaj także...
Continuum - w topologii ogólnej, niepusta przestrzeń topologiczna, która jest zarazem zwarta i spójna. Teoria continuów jest gałęzią topologii zajmującą się studiowaniem własności continuów i odwzorowań między nimi. Continua dzieli się zasadniczo na dwie klasy:Brzeg – pojęcie topologiczno-geometryczne oddające i formalizujące intuicję punktów „granicznych” danego zbioru, czy figury, czy też „ograniczających” je.
Definicja (z łac. definitio; od czas. definire: de + finire, "do końca, granicy"; od finis: granica, koniec) – wypowiedź o określonej budowie, w której informuje się o znaczeniu pewnego wyrażenia przez wskazanie innego wyrażenia należącego do danego języka i posiadającego to samo znaczenie.
Continuum - w topologii ogólnej, niepusta przestrzeń topologiczna, która jest zarazem zwarta i spójna. Teoria continuów jest gałęzią topologii zajmującą się studiowaniem własności continuów i odwzorowań między nimi. Continua dzieli się zasadniczo na dwie klasy:Brzeg – pojęcie topologiczno-geometryczne oddające i formalizujące intuicję punktów „granicznych” danego zbioru, czy figury, czy też „ograniczających” je.
Definicja (z łac. definitio; od czas. definire: de + finire, "do końca, granicy"; od finis: granica, koniec) – wypowiedź o określonej budowie, w której informuje się o znaczeniu pewnego wyrażenia przez wskazanie innego wyrażenia należącego do danego języka i posiadającego to samo znaczenie.

Parabola – prosty przykład krzywej.
Krzywa – uogólnienie linii prostej. Mimo intuicyjnej prostoty, pojęcie krzywej okazało się bardzo trudne do ścisłego zdefiniowania. Poprawna definicja powinna obejmować „dowolną linię” (w szczególności na płaszczyźnie lub przestrzeni trójwymiarowej), w tym także linię prostą, która mogłaby się rozgałęziać i przerywać.
Linia prosta lub prosta – jedno z podstawowych pojęć geometrii, szczególny przypadek nieograniczonej z obydwu stron krzywej o nieskończonym promieniu krzywizny w każdym punkcie.Droga – w topologii, ciągłe przekształcenie z przedziału jednostkowego w przestrzeń topologiczną. Pętlą nazywa się drogę, której początek i koniec pokrywają się. Ich parametr, szczególnie przy homotopiach, nazywa się niekiedy czasem.
Definicje formalne[ | edytuj kod]
Definicje historycznie odleglejsze[ | edytuj kod]
Definicje topologiczne[ | edytuj kod]
Szereg definicji topologicznych używa pojęcia continuum (kontinuum), czyli przestrzeni zwartej i spójnej.
Przestrzeń trójwymiarowa - potoczna nazwa przestrzeni euklidesowej o trzech wymiarach, lub równoważnej jej przestrzeni kartezjańskiej. Przymiotnik "trójwymiarowa" oznacza, że każdemu punktowi tej przestrzeni odpowiada trójka uporządkowana liczb rzeczywistych, zwanych współrzędnymi. Każdej trójce liczb rzeczywistych także odpowiada punkt tej przestrzeni.Kątem przecięcia się dwóch krzywych gładkich ( f(x) i g(x) ) nazywamy kąt ostry przecięcia się stycznych do danych krzywych w punkcie x0. Tangens tego kąta dla wykresów dwóch funkcji gładkich możemy obliczyć ze wzoru:
Definicje geometryczne[ | edytuj kod]
W przypadku geometrii różniczkowej definicje krzywej, jako obrazu odcinka otwartego przy odwzorowaniach różniczkowych, zakładają zawsze, że pierwsza pochodna jest różna od zera w każdym punkcie odcinka.
Linia łamana (polilinia, linia poligonowa, linia wielokątna lub krótko łamana) to w geometrii linia utworzona z ciągu odcinków (zwanych jej bokami) w taki sposób, żeTopologia (gr. tópos – miejsce, okolica; lógos – słowo, nauka) – jeden z najważniejszych kierunków w matematyce współczesnej. Obiektem jej badań są te własności figur geometrycznych i brył, które nie ulegają zmianie nawet po radykalnym zdeformowaniu tych figur (a więc np. położenie i sąsiedztwo). Własności takie nazywa się własnościami topologicznymi figury.
Zobacz też[ | edytuj kod]
Przypisy[ | edytuj kod]
- Jacek Gancarzewicz, Barbara Opozda: Wstęp do geometrii różniczkowej. Kraków: Wydawnictwo UJ, 2003, s. 11. ISBN 83-233-1768-2.
Kontrola autorytatywna (pojęcie geometryczne):LCCN: sh85034914 GND: 4033824-1 NDL: 00567237 BNCF: 10133
Płaszczyzna – jedno z podstawowych pojęć pierwotnych geometrii Euklidesa i geometrii absolutnej. W niektórych innych aksjomatyzacjach geometrii, na przykład w geometrii analitycznej, płaszczyzna nie jest pojęciem pierwotnym, lecz zbiorem punktów.Library of Congress Control Number (LCCN) – numer nadawany elementom skatalogowanym przez Bibliotekę Kongresu wykorzystywany przez amerykańskie biblioteki do wyszukiwania rekordów bibliograficznych w bazach danych i zamawiania kart katalogowych w Bibliotece Kongresu lub u innych komercyjnych dostawców.
Warto wiedzieć że... beta
Funkcja przedziałami liniowa – funkcja zmiennej rzeczywistej, której dziedzina daje się rozbić na sumę rozłącznych przedziałów w ten sposób, że w każdym z nich funkcja jest liniowa.
Przedział – zbiór elementów danego zbioru częściowo uporządkowanego, zawartych między dwoma ustalonymi elementami tego zbioru, nazywanymi początkiem i końcem przedziału.
Euklides z Aleksandrii (gr. Εὐκλείδης, Eukleides, ur. ok. 365 r. p.n.e., zm. ok. 300 r. p.n.e.) – matematyk grecki pochodzący z Aten, przez większość życia działający w Aleksandrii.
Funkcja ciągła – funkcja o następującej intuicyjnej własności: „mała” zmiana argumentu niesie ze sobą „małą” zmianę wartości; lub też: wartości funkcji dla „bliskich” sobie argumentów również będą sobie „bliskie”.
Georg Ferdinand Ludwig Philipp Cantor (ur. 3 marca 1845 w Petersburgu, zm. 6 stycznia 1918 w sanatorium w Halle) – niemiecki matematyk.
Kartezjusz (fr. René Descartes, łac. Renatus Cartesius, ur. 31 marca 1596 w La Haye-en-Touraine w Turenii, zm. 11 lutego 1650 w Sztokholmie) – francuski filozof, matematyk i fizyk, jeden z najwybitniejszych uczonych XVII wieku, uważany za prekursora nowożytnej kultury umysłowej.
Marie Ennemond Camille Jordan (ur. 5 stycznia 1838 w Lyonie, zm. 22 stycznia 1922 w Paryżu) – matematyk francuski znany szerzej pod swoim trzecim imieniem jako Camille Jordan.