• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Komputer kwantowy



    Podstrony: [1] 2 [3] [4]
    Przeczytaj także...
    Wszechświat – wszystko, co fizycznie istnieje: cała przestrzeń, czas, wszystkie formy materii i energii oraz prawa fizyki i stałe fizyczne określające ich zachowanie. Słowo „wszechświat” może być też używane w innych kontekstach jako synonim słów „kosmos” (w rozumieniu filozofii), „świat” czy „natura”. W naukach ścisłych słowa „wszechświat” i „kosmos” są równoważne.Atom – podstawowy składnik materii. Składa się z małego dodatnio naładowanego jądra o dużej gęstości i otaczającej go chmury elektronowej o ujemnym ładunku elektrycznym.
    Historia[]

    Podstawy teoretyczne[]

    Na możliwość budowy komputerów wykorzystujących prawa fizyki kwantowej zwrócił uwagę na początku lat 80. Paul Benioff z Argonne National Laboratory w Stanach Zjednoczonych. Kompletną teorię działania komputera kwantowego stworzył w połowie lat 80. David Deutsch z brytyjskiego Uniwersytetu Oksfordzkiego. Dołączył doń następnie polski informatyk i fizyk Artur Ekert, też związany na stałe z Oksfordem. Pomysł wzbudził szersze zainteresowanie w 1994 roku, gdy Peter Shor z AT&T Bell Labs w Murray Hill wymyślił algorytm, który przy użyciu komputera kwantowego mógłby szybko rozkładać bardzo duże liczby na iloczyny liczb pierwszych.

    Liczba pierwsza – liczba naturalna większa od 1, która ma dokładnie dwa dzielniki naturalne: jedynkę i siebie samą, np.Beryl (Be, łac. beryllium) – pierwiastek chemiczny o liczbie atomowej 4, metal należący do drugiej grupy głównej układu okresowego. Jedynym stabilnym izotopem jest Be. Został odkryty przez Louisa Vauquelina w 1798 r.

    Realizacje fizyczne[]

    Układ skonstruowany przez D-Wave Systems, zawierający 128 kubitów zrealizowanych za pomocą nadprzewodników

    Kubitami są cząstki elementarne, np. fotony lub elektrony. Pierwsze realizacje kontrolowanych obliczeń kwantowych zaprezentowano w 1995 roku. Jednocześnie w kilku ośrodkach udało się skonstruować kwantowe bramki, które przetwarzałyby kubity. Grupa prof. H. Jeffa Kimble'a z Kalifornijskiego Instytutu Technologii w Pasadenie posłużyła się atomem cezu złapanym w optyczną pułapkę pomiędzy lustrami (rolę kubitów grały fotony o różnej polaryzacji). Z kolei grupa Chrisa Monroe z Narodowego Instytutu Standardów i Technologii w Boulder w Kolorado wykorzystała atom berylu oświetlany światłem lasera. Jeszcze inną bramkę kwantową, wykorzystując atom rydbergowski, stworzył zespół Serge'a Haroche'a z francuskiego Ecole Normale Superieure.

    Mechanika kwantowa (teoria kwantów) – teoria praw ruchu obiektów świata mikroskopowego. Poszerza zakres mechaniki na odległości czasoprzestrzenne i energie, dla których przewidywania mechaniki klasycznej nie sprawdzały się. Opisuje przede wszystkim obiekty o bardzo małych masach i rozmiarach - np. atom, cząstki elementarne itp. Jej granicą dla średnich rozmiarów lub średnich energii czy pędów jest mechanika klasyczna.Spintronika, (elektronika spinowa, magnetronika) jest odmianą elektroniki. Podczas gdy w tradycyjnych układach scalonych nośnikiem informacji są zmiany w przepływie prądu, w spintronice brany jest pod uwagę również spin elektronu.

    W 2001 roku grupa informatyków z IBM i Uniwersytetu Stanford zademonstrowała działanie algorytmu Shora na 7-kubitowym komputerze kwantowym opartym o jądrowy rezonans magnetyczny. Dokonano wtedy rozkładu liczby 15 = 3 • 5. Natomiast faktoryzacji liczby 21 dokonała w 2011 roku inna grupa badaczy.

    W 2011 roku udało się stworzyć układ złożony z 10 miliardów kubitów, a 2 lata później powiodło się utrzymanie 10 miliardów kubitów w stanie splątanym przez 39 minut.

    Algorytm Grovera – algorytm kwantowy przeznaczony do działania na komputerze kwantowym opublikowany w 1996 przez Lova K. Grovera.Foton (gr. φως – światło, w dopełniaczu – φοτος, nazwa stworzona przez Gilberta N. Lewisa) jest cząstką elementarną, nie posiadającą ładunku elektrycznego ani momentu magnetycznego, o masie spoczynkowej równej zero (m0 = 0), liczbie spinowej s = 1 (fotony są zatem bozonami). Fotony są nośnikami oddziaływań elektromagnetycznych, a ponieważ wykazują dualizm korpuskularno-falowy, są równocześnie falą elektromagnetyczną.

    Komputery D-Wave Systems[]

    13 lutego 2007 firma D-Wave Systems zaprezentowała 128-kubitowy układ, nazywany pierwszym na świecie komputerem z rejestrem kwantowym. Nie ma jednak pewności, czy można go tak nazwać: zaprezentowano bowiem jedynie jego działanie, pomijając budowę. W 2009 roku D-Wave Systems stworzyło dla Google komputer kwantowy wyszukujący grafiki.W maju 2011 firma Lockheed Martin zakupiła wyprodukowany przez D-Wave Systems komputer za 10 milionów dolarów, podpisując jednocześnie kilkuletni kontrakt na jego obsługę i opracowanie odpowiednich algorytmów. W 2012 roku na komputerze kwantowym zaprezentowano znajdowanie najniższej energii zwiniętego białka.

    Sfera Blocha – trójwymiarowa sfera zespolona o promieniu jednostkowym. Daje ona możliwość wizualizacji pojedynczego bitu kwantowego (kubitu) w stanie:Superpozycja – własność rozwiązań równania różniczkowego przejawiająca się w tym, że suma dwóch rozwiązań także jest rozwiązaniem równania. W podstawowym sensie własność ta może zostać wyrażona w inny sposób przez twierdzenie, że przestrzeń rozwiązań równania jest przestrzenią liniową. Tak wyrażone twierdzenie pozostaje prawdziwe, jeśli równanie różniczkowe jest liniowe.

    W styczniu 2012 roku badacze z D-Wave Systems 84-kubitowym komputerem kwantowym obliczyli kilka liczb Ramseya. Było to największe dotychczas przeprowadzone obliczenie kwantowe. 3 miesiące później przy pomocy 2 kubitów udowodniono, że algorytm Grovera jest poprawny w 95% przypadków. W kwietniu D-Wave Systems poinformowało o Vesuvius – 512-kubitowym czipie, który może dokonywać więcej niż 10 obliczeń naraz, co zajęłoby przeciętnemu PC miliony lat. W sierpniu przy pomocy 5 nadprzewodzących rezonatorów i 4 kubitów fazowych (nadprzewodzące urządzenie bazujące na tunelowaniu Josephsona) pokazano, że algorytm Shora jest poprawny w 50% przypadków, co zgadza się z teorią.

    Przestrzeń Hilberta – w analizie funkcjonalnej rzeczywista lub zespolona przestrzeń unitarna (tj. przestrzeń liniowa nad ciałem liczb rzeczywistych lub zespolonych z abstrakcyjnym iloczynem skalarnym), zupełna ze względu na indukowaną (poprzez normę) z iloczynu skalarnego tej przestrzeni metrykę. Jako unormowana i zupełna, każda przestrzeń Hilberta jest przestrzenią Banacha, a przez to przestrzenią Frécheta, a stąd lokalnie wypukłą przestrzenią liniowo-topologiczną. Przestrzenie te noszą nazwisko Davida Hilberta, który wprowadził je pod koniec XIX wieku; są one podstawowym narzędziem wykorzystywanym w wielu dziedzinach fizyki, m.in. w mechanice kwantowej (np. przestrzeń Foka nad przestrzenią Hilberta).Komputer (z ang. computer od łac. computare – liczyć, sumować; dawne nazwy używane w Polsce: mózg elektronowy, elektroniczna maszyna cyfrowa, maszyna matematyczna) – maszyna elektroniczna przeznaczona do przetwarzania informacji, które da się zapisać w formie ciągu cyfr albo sygnału ciągłego.

    Na początku 2014 roku John Smolin i Graeme Smith przedstawili pracę, w której argumentują, że maszyna posiadana przez D-Wave Systems nie jest komputerem kwantowym. Natomiast w marcu 2014 roku w „Nature Physics” przedstawiono wyniki eksperymentów dowodzących, że D-Wave One jest jednak komputerem kwantowym. Znów test z czerwca 2014 nie wykazał różnicy pomiędzy klasycznym komputerem a maszyną D-Wave Systems, lecz firma odpowiedziała, że różnica jest zauważalna dopiero dla bardziej zaawansowanych problemów niż te rozwiązywane w teście.

    Artur Ekert (ur. 19 września 1961 we Wrocławiu) – fizyk prowadzący badania w zakresie podstaw mechaniki kwantowej oraz kwantowego przetwarzania informacji. Obecnie zajmuje on stanowiska profesora fizyki kwantowej na wydziale Matematyki Uniwersytetu Oksfordzkiego a także profesora honorowego Lee Kong Chian (Lee Kong Chian Centennial Professor) na Narodowym Uniwersytecie Singapuru oraz dyrektora Centrum Technologii Kwantowych działającego w ramach tego uniwersytetu.David Elieser Deutsch (ur. 1953 w Hajfie, Izrael) – fizyk Uniwersytetu w Oksfordzie, członek Towarzystwa Królewskiego w Londynie.

    Na fali tych doniesień również National Security Agency pracuje nad zbudowaniem komputera kwantowego, głównie służącego do łamania zaszyfrowanych informacji.

    Zalety obliczeń kwantowych[]

    Komputer kwantowy, mimo że wykorzystywałby inne właściwości fizyczne niż klasyczne komputery, nie umożliwiałby rozwiązywania nowej klasy problemów. Każdy problem rozwiązywalny przez komputer kwantowy może zostać rozwiązany przez komputer klasyczny. Jednak dzięki specyficznym własnościom komputerów kwantowych pewne problemy można byłoby rozwiązać znacznie szybciej, co w praktyce znacznie poszerzyłoby zakres problemów do jakich mogą być użyte komputery. Klasycznym przykładem jest tutaj algorytm faktoryzacji Shora, służący do rozbijania liczb na czynniki pierwsze. Wykonanie podobnego algorytmu dla kilkudziesięciocyfrowych liczb na współczesnych komputerach przekroczyłoby średnią długość życia człowieka, a dla liczb jeszcze większych – czas istnienia wszechświata. Na komputerach kwantowych możliwe byłoby wykonanie tych operacji w bardziej realnym okresie.

    Gazeta.pl – jeden z największych polskich portali internetowych, w jego skład wchodzą serwisy tematyczne m.in. Wiadomości, Gospodarka, Edukacja, Gry, Kobieta, eDziecko.pl, a także serwisy lokalne największych polskich miast (np.: Krakow.Gazeta.pl, Warszawa.Gazeta.pl, czy Wroclaw.Gazeta.pl). Serwisy grupy Gazeta.pl odwiedza miesięcznie 11,92 mln użytkowników.Peter W. Shor (ur. 14 sierpnia 1959 roku w USA) – amerykański informatyk teoretyk i matematyk, autor kwantowego Algorytmu Shora. Algorytm Shora służy do rozkładu na czynniki pierwsze bardzo dużych liczb naturalnych z wykorzystaniem komputera kwantowego.

    W najczęściej spotykanym modelu obliczeń kwantowych stan układu kwantowego reprezentowany jest za pomocą wektora w skończeniewymiarowej przestrzeni Hilberta (kubit). Natomiast przeprowadzane operacje są opisywane za pomocą macierzy unitarnych.

    Ograniczenia obliczeń kwantowych[]

    Idea kwantowego komputera też ma swoje słabe strony. Najpoważniejsza z nich nazywa się dekoherencją. Polega ona na tym, że stany kwantowe będące superpozycjami stanów stacjonarnych są nadzwyczaj nietrwałe. Pod wpływem oddziaływania czynników zewnętrznych układ „wypada” ze stanu superpozycji i „przeskakuje” do jednego ze stanów stacjonarnych. Dokonuje się to w ciągu drobnego ułamka sekundy. Nawet najmniejszy kontakt z otoczeniem może wpłynąć na wynik pomiaru. Jednym z testowanych sposobów na rozwiązanie tego problemu jest przetrzymywanie atomów w pułapkach magnetycznych i sterowanie nimi za pomocą impulsów światła laserowego.

    Cez (Cs, łac. caesium) – pierwiastek chemiczny, metal alkaliczny. Nazwa pochodzi od łacińskiego słowa "szaroniebieski", związanego z kolorem nalotu pokrywającego zwykle powierzchnię.Atomy rydbergowskie są to atomy, w których przynajmniej jeden elektron został wzbudzony do bardzo wysokich poziomów energetycznych. Nazwę swą wzięły od Johannesa Rydberga, szwedzkiego fizyka, który zajmował się m.in. badaniem emisji fotonów przy przejściach elektronowych między poziomami energetycznymi.

    W 2012 roku udało się stłumić dekoherencję na ok. 2 sekundy w temperaturze pokojowej. Rok później czas ten wyniósł już 39 minut.

    Podstrony: [1] 2 [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Zwijanie białka, nazywane także fałdowaniem białka to proces fizyczny polegający na formowaniu przez polipeptyd (posiadający strukturę kłębka statystycznego) wysoko zorganizowanej struktury o charakterystycznej i stabilnej konformacji.
    Informatyka kwantowa – dziedzina łącząca informatykę i mechanikę kwantową, zajmująca się wykorzystaniem własności układów kwantowych do przesyłania i obróbki informacji (patrz też informacja kwantowa).
    Algorytm kwantowy – rodzaj algorytmu przeznaczonego do działania na maszynie kwantowej (komputer kwantowy). Dotychczas powstało kilkanaście algorytmów wykorzystujących możliwości oferowane przez maszyny kwantowe. Należą do nich algorytmy Grovera, Deutscha, Simona, Shora, Kitaeva i Bernsteina-Vaziraniego.
    Rejestr kwantowy (ang. quantum registers) – układ wielu kubitów, który zgodnie z jednym z podstawowych postulatów mechaniki kwantowej może być rozpatrywany jako układ izolowany złożony z wielu układów składowych (poszczególne kubity należące do rejestru).
    Nadprzewodnictwo – stan materiału polegający na zerowej rezystancji, jest osiągany w niektórych materiałach w niskiej temperaturze.
    Tunelowanie Josephsona – zjawisko fizyczne postulowane przez Briana Josephsona (Nagroda Nobla z fizyki w 1973 roku) w 1962 roku, a potwierdzone doświadczalnie w 1963. Efekt ten polega na tunelowaniu elektronów między dwoma nadprzewodnikami na granicy nadprzewodnik-izolator-nadprzewodnik (tzw. złącze Josephsona). Nadprzewodniki rozdzielone są cienką warstwą wykonaną z dielektryka (izolatora) o grubości nanometrów.
    Lockheed Martin Corporation (NYSE: LMT) – amerykański koncern zbrojeniowy powstały w 1995 z połączenia korporacji Lockheed i Martin Marietta. Jeden z „wielkiej piątki” amerykańskiego przemysłu obronnego. Zatrudnia ponad 140 tysięcy osób na całym świecie. Siedziba koncernu znajduje się w Bethesda w stanie Maryland.

    Reklama

    Czas generowania strony: 0.026 sek.