• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Kombinatoryka

    Przeczytaj także...
    Graf to – w uproszczeniu – zbiór wierzchołków, które mogą być połączone krawędziami, w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków (ilustracja po prawej stronie). Grafy to podstawowy obiekt rozważań teorii grafów. Za pierwszego teoretyka i badacza grafów uważa się Leonarda Eulera, który rozstrzygnął zagadnienie mostów królewieckich.Teoria prawdopodobieństwa (także rachunek prawdopodobieństwa lub probabilistyka) – dział matematyki zajmujący się zdarzeniami losowymi. Rachunek prawdopodobieństwa zajmuje się badaniem abstrakcyjnych pojęć matematycznych stworzonych do opisu zjawisk, które nie są deterministyczne: zmiennych losowych w przypadku pojedynczych zdarzeń oraz procesów stochastycznych w przypadku zdarzeń powtarzających się (w czasie). Jako matematyczny fundament statystyki, teoria prawdopodobieństwa odgrywa istotną rolę w sytuacjach, w których konieczna jest analiza dużych zbiorów danych. Jednym z największych osiągnięć fizyki dwudziestego wieku było odkrycie probabilistycznej natury zjawisk fizycznych w skali mikroskopijnej, co zaowocowało powstaniem mechaniki kwantowej.
    Matematyka dyskretna - zbiorcza nazwa wszystkich działów matematyki, które zajmują się badaniem struktur nieciągłych, to znaczy zawierających zbiory co najwyżej przeliczalne (czyli właśnie dyskretne).

    Kombinatoryka – dział matematyki, zajmujący się badaniem struktur skończonych lub nieskończonych, ale przeliczalnych. Np. określenie, ile jest podzbiorów k-elementowych w zbiorze n-elementowym stanowi jedno z typowych zagadnień kombinatoryki.

    Kombinatoryka swój rozwój zawdzięcza rachunkowi prawdopodobieństwa, teorii grafów, teorii informacji i innym działom matematyki stosowanej. Stanowi jeden z działów matematyki dyskretnej.

    Kombinatoryka posługuje się terminologią niewystępującą w innych działach matematyki, stąd pozorna jej odrębność. Najważniejszym jej zadaniem jest konstruowanie spełniających pewne określone warunki odwzorowań jednego zbioru skończonego w drugi oraz znajdowanie wzorów na liczbę tych odwzorowań.

    Zbiór przeliczalny – intuicyjnie, zbiór którego elementy można ustawić w ciąg (skończony bądź nie), tzn. "wypisać je po kolei", "ponumerować". Istnieją dwie nierównoważne konwencje użycia terminu zbiór przeliczalny w matematyce:Matematyka (z łac. mathematicus, od gr. μαθηματικός mathēmatikós, od μαθηματ-, μαθημα mathēmat-, mathēma, „nauka, lekcja, poznanie”, od μανθάνειν manthánein, „uczyć się, dowiedzieć”; prawd. spokr. z goc. mundon, „baczyć, uważać”) – nauka dostarczająca narzędzi do otrzymywania ścisłych wniosków z przyjętych założeń, zatem dotycząca prawidłowości rozumowania. Ponieważ ścisłe założenia mogą dotyczyć najróżniejszych dziedzin myśli ludzkiej, a muszą być czynione w naukach ścisłych, technice a nawet w naukach humanistycznych, zakres matematyki jest szeroki i stale się powiększa.




    Warto wiedzieć że... beta

    Teoria informacji – dyscyplina zajmująca się problematyką informacji oraz metodami przetwarzania informacji, np. w celu transmisji lub kompresji. Naukowo teoria informacji jest blisko powiązana z matematyką dyskretną, a z jej osiągnięć czerpią takie dyscypliny jak informatyka i telekomunikacja.

    Reklama

    Czas generowania strony: 0.009 sek.