• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Kombinacja liniowa



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Mnożenie przez skalar − jedno z działań dwuargumentowych definiujących przestrzeń liniową w algebrze liniowej (lub ogólniej: moduł w algebrze ogólnej). Mnożenia wektora przez skalar dającego w wyniku wektor nie należy mylić z iloczynem skalarnym (nazywanym niekiedy iloczynem wewnętrznym) dwóch wektorów dającym w wyniku skalar.Przestrzeń euklidesowa – przestrzeń o geometrii euklidesowej. Jest ona naturalnym elementem modeli świata rzeczywistego (łac. geometria = mierzenie ziemi) i stanowi dobre przybliżenie przestrzeni fizycznych w warunkach makroskopowych, jednak nie nadaje się do opisu rzeczywistości w bardzo małych, atomowych, lub bardzo wielkich, astronomicznych, wielkościach. Jednowymiarowa przestrzeń euklidesowa nazywana jest prostą euklidesową, zaś dwuwymiarowa – płaszczyzną euklidesową. Przestrzenie te nazywa się również przestrzeniami afinicznymi euklidesowymi w odróżnieniu od przestrzeni liniowych euklidesowych, znanych szerzej jako przestrzenie unitarne.

    Kombinacja liniowa – jedno z podstawowych pojęć algebry liniowej i powiązanych z nią działów matematyki. W dalszej części pojęcie to będzie omawiane głównie w kontekście przestrzeni liniowych nad ciałem z uogólnieniami na końcu artykułu.

    Rozkład prawdopodobieństwa – w najczęstszej interpretacji (rozkład zmiennej losowej) miara probabilistyczna określona na sigma-ciele podzbiorów zbioru wartości zmiennej losowej (wektora losowego), pozwalająca przypisywać prawdopodobieństwa zbiorom wartości tej zmiennej, odpowiadającym zdarzeniom losowym. Formalnie rozkład prawdopodobieństwa może być jednak rozpatrywany także bez stosowania zmiennych losowych.Kombinacja afiniczna – w matematyce pojęcie będące szczególnym przypadkiem kombinacji liniowej w przestrzeniach liniowych mające przede wszystkim zastosowania w przestrzeniach afinicznych, a więc i euklidesowych; z tego względu istotne w geometrii euklidesowej.

    Definicja[]

    Niech będą elementami przestrzeni liniowej nad pewnym ciałem, a będą elementami tego ciała. W dalszej części elementy należące do nazywane będą często wektorami, a elementy ciała będą zwane nieraz skalarami.

    Wielomian – wyrażenie algebraiczne złożone ze zmiennych i stałych połączonych działaniami dodawania, odejmowania, mnożenia i podnoszenia do potęgi o stałym wykładniku naturalnym.Kombinacja wypukła skończonej liczby elementów v 1 , v 2 , … , v n {displaystyle v_{1},v_{2},dots ,v_{n}} przestrzeni wektorowej V {displaystyle V} , to kombinacja liniowa ∑ i = 1 n α i v i {displaystyle sum _{i=1}^{n}alpha _{i}v_{i}} tych elementów taka, że jej współczynniki są nieujemne:

    Kombinacją liniową wektorów o współczynnikach nazywa się wektor

    Liniowa niezależność – w algebrze liniowej własność algebraiczna rodziny wektorów danej przestrzeni liniowej mówiąca, że żaden z nich nie może być zapisany jako kombinacja liniowa skończenie wielu innych wektorów ze zbioru. Rodzinę wektorów, która nie jest liniowo niezależna, nazywa się liniowo zależną.Przestrzeń liniowa lub wektorowa – w matematyce zbiór obiektów (nazywanych "wektorami"), które mogą być, nieformalnie rzecz ujmując, skalowane i dodawane. Formalnie jest to zbiór z określonymi dwoma działaniami: dodawaniem elementów tej przestrzeni (wektorów) i mnożeniem przez elementy ustalonego ciała, które związane są ze sobą poniższymi aksjomatami. Przestrzenie liniowe to podstawowy obiekt badań algebry liniowej i analizy funkcjonalnej. Znajdują zastosowanie niemal we wszystkich gałęziach matematyki, naukach ścisłych i inżynierii.

    Uwaga[]

    Z definicji wynika, że kombinacja liniowa ma skończony charakter, tzn. kombinacja liniowa zawiera tylko skończenie wiele wektorów (poza przypadkami opisanymi w sekcji Uogólnienia).

    Ciało uporządkowane – ciało K, w którym wyróżniony jest zbiór D elementów dodatnich o następujących własnościach:Ranga grupy abelowej – w algebrze, uogólnienie pojęcia rangi grupy abelowej wolnej na dowolne grupy abelowe; można ją postrzegać jako najmniejszą liczbę elementów generujących daną grupę abelową. Ranga grupy abelowej wyznacza rozmiar największej grupy abelowej wolnej zawartej w tej grupie. Jeżeli grupa jest beztorsyjna, to rangę można traktować analogicznie do wymiaru przestrzeni liniowej: jest to w istocie wymiar najmniejszej przestrzeni liniowej nad ciałem liczb wymiernych, w której można zanurzyć daną grupę abelową.

    Niekiedy dodatkowo przyjmuje się, że dla kombinacja liniowa jest wektorem zerowym w

    Podstrony: 1 [2] [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Moduł – struktura algebraiczna będąca uogólnieniem przestrzeni liniowej. Ponieważ grupy abelowe można postrzegać jako moduły nad pierścieniem liczb całkowitych, to teoria modułów znajduje zastosowanie w wielu działach algebry i innych dziedzinach matematyki.
    Pierścień – struktura formalizująca własności algebraiczne liczb całkowitych oraz arytmetyki modularnej; intuicyjnie zbiór, którego elementy mogą być bez przeszkód dodawane, odejmowane i mnożone, lecz niekoniecznie dzielone. Badanie pierścieni umożliwiło uogólnienie innych pojęć matematycznych takich, jak np. liczby pierwsze (przez ideały pierwsze), wielomiany, ułamki oraz rozwinięcie teorii podzielności i wskazania przy tym najogólniejszej struktury, w której możliwe jest stosowanie algorytmu Euklidesa (tzw. pierścień Euklidesa). Dział matematyki opisujący te struktury nazywa się teorią pierścieni.
    Podstawa logarytmu naturalnego, liczba e, liczba Eulera, liczba Nepera – stała matematyczna wykorzystywana w wielu dziedzinach matematyki i fizyki. W przybliżeniu wynosi 2,7182818, oznacza się ją literą e.
    Przestrzeń liniowo-topologiczna – przestrzeń liniowa, w której istnieje taka topologia (dla której dodatkowo zakłada się, że każdy punkt tej przestrzeni jest zbiorem domkniętym, innymi słowy przestrzeń spełnia pierwszy aksjomat oddzielania), że działania dodawania wektorów i mnożenia przez skalar są ciągłe. Można udowodnić, że każda przestrzeń liniowo-topologiczna jest przestrzenią Hausdorffa, a nawet jest przestrzenią regularną. Grupa addytywna przestrzeni liniowo-topologicznej jest grupą topologiczną. Każda przestrzeń unormowana (a więc np. dowolna przestrzeń Banacha czy Hilberta) jest przestrzenią liniowo-topologiczną.
    Baza – pojęcie będące przeniesieniem oraz rozwinięciem idei układu współrzędnych kartezjańskich w przestrzeniach euklidesowych na abstrakcyjne przestrzenie liniowe.
    Zbiór skończony − zbiór o skończonej liczbie elementów. Nieujemną liczbę naturalną określającą ilość elementów zbioru skończonego nazywa się mocą zbioru. Zbiór skończony ma moc skończoną. Najmniejszym zbiorem skończonym jest zbiór pusty  Ø.
    Miara – rozważana w matematyce funkcja służąca określeniu „wielkości” zbiorów poprzez przypisanie im pewnej nieujemnej liczby.

    Reklama

    Czas generowania strony: 0.036 sek.