• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Kod binarny



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Kod uzupełnień do dwóch (w skrócie U2 lub ZU2) – system reprezentacji liczb całkowitych w dwójkowym systemie pozycyjnym. Jest obecnie najpopularniejszym sposobem zapisu liczb całkowitych w systemach cyfrowych. Jego popularność wynika z faktu, że operacje dodawania i odejmowania są w nim wykonywane tak samo jak dla liczb binarnych bez znaku. Z tego też powodu oszczędza się na kodach rozkazów procesora.Zegar binarny jest to zegar, który wyświetla godzinę w systemie binarnym. Istnieją zarówno cyfrowe, jak i analogowe zegary binarne. W przypadku zegarów cyfrowych, czas wyświetlany jest za pomocą diod LED.
    Dwójkowy zegarek pokazujący godzinę 3:25

    Dwójkowy system liczbowy, system binarny – pozycyjny system liczbowy, w którym podstawą jest liczba 2. Do zapisu liczb potrzebne są tylko dwie cyfry: 0 i 1.

    Spis treści

  • 1 Historia
  • 2 Wykorzystanie
  • 3 Zmiany systemu
  • 4 Działania na liczbach w systemie dwójkowym
  • 5 Zobacz też
  • 6 Przypisy
  • Kod znak-moduł to sposób zapisu liczb całkowitych oznaczany jako ZM (bądź SM – ang. sign-magnitude). Wszystkie bity poza najstarszym mają takie samo znaczenie jak w naturalnym kodzie binarnym. Wyróżniony bit w tym zapisie jest bitem znaku. Jeżeli ma on wartość 0 to dana liczba jest nieujemna, jeżeli 1, to liczba jest niedodatnia. W związku z tym występują dwie reprezentacje zera: +0 (00000000ZM) i -0 (10000000ZM). Jednocześnie wpływa to na zakres liczb jaki można przedstawić używając kodowania ZM na n bitach:Ułamek dziesiętny – zapis liczby rzeczywistej w postaci ułamka, którego mianownik jest potęgą o wykładniku naturalnym liczby 10.


    Podstrony: 1 [2] [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Zero (zapisywane jako 0) – element neutralny dodawania; najmniejsza nieujemna liczba. To, czy zero jest uznawane za liczbę naturalną, jest kwestią umowy – czasem włącza się, a czasem wyklucza się je z tego zbioru. Zero nie jest ani liczbą pierwszą, ani liczbą złożoną.
    Systemy pozycyjne – metody zapisywania liczb (in. systemy liczbowe) w taki sposób, że w zależności od pozycji danej cyfry w ciągu, oznacza ona wielokrotność potęgi pewnej liczby uznawanej za bazę danego systemu. Np. powszechnie używa się systemu dziesiętnego, w którym za bazę przyjmuje się liczbę dziesięć. Tym samym napis 46532 oznacza 4 × 10 4 + 6 × 10 3 + 5 × 10 2 + 3 × 10 1 + 2 × 10 0 = 46532 {displaystyle 4 imes 10^{4}+6 imes 10^{3}+5 imes 10^{2}+3 imes 10^{1}+2 imes 10^{0}=46532} .
    Ciąg – w matematyce pojęcie oddające intuicję ponumerowania, czy też uporządkowania elementów zbioru. W zależności od rodzaju elementów zbioru stosuje się różne nazwy: w przypadku liczb mówi się o ciągach liczbowych, bądź bardziej precyzyjnie, np. w przypadku zbioru liczb całkowitych, rzeczywistych czy zespolonych, ciąg nazywa się wtedy odpowiednio ciągiem całkowitoliczbowym, rzeczywistym i zespolonym. Jeśli elementami zbioru są funkcje, to ciąg nazywa się ciągiem funkcyjnym. Ciąg powstały poprzez wybranie elementów innego ciągu nazywa się podciągiem.
    Elektronika cyfrowa to dziedzina elektroniki zajmująca się układami cyfrowymi, sygnałami cyfrowymi i cyfrowym przetwarzaniem sygnałów.
    1 (jeden, jedność) – liczba naturalna następująca po 0 i poprzedzająca 2. 1 jest też cyfrą wykorzystywaną do zapisu liczb w różnych systemach, np. w dwójkowym (binarnym), ósemkowym, dziesiętnym i szesnastkowym systemie liczbowym. Każda liczba całkowita jest podzielna przez 1.
    <|||||||||| |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| - |||||||||| |||||||||| ||||||||||>
    Kod uzupełnień do jedności to sposób zapisu liczb całkowitych oznaczany jako ZU1 lub U1. Liczby dodatnie zapisywane są jak w naturalnym kodzie binarnym, przy czym najbardziej znaczący bit – traktowany jako bit znaku – musi mieć wartość 0. Do reprezentowania liczb ujemnych wykorzystywana jest bitowa negacja danej liczby, co sprawia, że bit znaku ma wartość 1. Wynika z tego również występowanie dwóch reprezentacji zera: +0 (00000000U1) i -0 (11111111U1). W związku z tym liczby zapisane w ZU1 na n bitach pochodzą z zakresu:

    Reklama