• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Kierunek wektora

    Przeczytaj także...
    Linia prosta lub prosta – jedno z podstawowych pojęć geometrii, szczególny przypadek nieograniczonej z obydwu stron krzywej o nieskończonym promieniu krzywizny w każdym punkcie.Półprosta - figura geometryczna składająca się z punktów prostej leżących po jednej stronie punktu prostej, który jest nazywany początkiem półprostej. Bardzo często do tak określonej półprostej dołącza się początek półprostej i mówimy o półprostej domkniętej (z początkiem). W przeciwnym wypadku mówimy o półprostej otwartej (bez początku) .
    Relacja równoważności – zwrotna, symetryczna i przechodnia relacja dwuargumentowa określona na pewnym zbiorze utożsamiająca ze sobą w pewien sposób jego elementy, co ustanawia podział tego zbioru na rozłączne podzbiory według tej relacji. Podobnie każdy podział zbioru niesie ze sobą informację o pewnej relacji równoważności.

    Kierunek - klasa abstrakcji relacji równoległości prostych, półprostych, odcinków i wektorów.

    Geometria rzutowa to dział matematyki zajmujący się badaniem własności figur geometrycznych, które nie zmieniają się przy przekształceniach rzutowych. Do najważniejszych pojęć geometrii rzutowej należą: prosta, płaszczyzna oraz dwustosunek czwórki punktów. Twórcą geometrii rzutowej był francuski matematyk Jean-Victor Poncelet, który jej podstawy podał w 1822.Wektor (z łac. [now.], „niosący; ten, który niesie; nośnik”, od vehere, „nieść”; via, „droga”) – istotny w matematyce elementarnej, inżynierii i fizyce obiekt mający moduł (zwany też – zdaniem niektórych niepoprawnie - długością lub wartością), kierunek wraz ze zwrotem (określającym orientację wzdłuż danego kierunku).

    Innymi słowy jest to zbiór wszystkich prostych lub wektorów równoległych do pewnej zadanej prostej. Mówiąc, że pewien wektor albo prosta mają dany kierunek, mamy na myśli, że należą one do tego zbioru.

    Argument liczby zespolonej – miara kąta skierowanego między wektorem reprezentującym liczbę zespoloną z {displaystyle z} na płaszczyźnie zespolonej, a osią rzeczywistą. Oznaczenie: arg ⁡ ( z ) {displaystyle arg(z)} .Zbiór – pojęcie pierwotne teorii zbiorów (znanej szerzej jako teoria mnogości; za jej twórcę uważa się Georga Cantora) leżące u podstaw całej matematyki; intuicyjnie jest to nieuporządkowany zestaw różnych obiektów, czy też kolekcja niepowtarzających się komponentów bez wyróżnionej kolejności.

    Zobacz też[]

  • wektor
  • zwrot wektora
  • argument liczby zespolonej
  • geometria rzutowa
  • (window.RLQ=window.RLQ||).push(function(){mw.log.warn("Gadget \"edit-summary-warning\" styles loaded twice. Migrate to type=general. See \u003Chttps://phabricator.wikimedia.org/T42284\u003E.");mw.log.warn("Gadget \"wikibugs\" styles loaded twice. Migrate to type=general. See \u003Chttps://phabricator.wikimedia.org/T42284\u003E.");mw.log.warn("Gadget \"ReferenceTooltips\" styles loaded twice. Migrate to type=general. See \u003Chttps://phabricator.wikimedia.org/T42284\u003E.");mw.log.warn("Gadget \"main-page\" styles loaded twice. Migrate to type=general. See \u003Chttps://phabricator.wikimedia.org/T42284\u003E.");});
    Odcinek – w geometrii część prostej zawarta pomiędzy dwoma jej punktami z tymi punktami włącznie. Odcinek w całości zawiera się wewnątrz tej prostej.Zwrot wektora – jedna z podstawowych własności charakteryzujących wektor, obok jego kierunku, długości i (dla wektora zaczepionego) punktu zaczepienia.



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Relacja – w teorii mnogości dowolny podzbiór iloczynu kartezjańskiego skończonej liczby zbiorów; definicja ta oddaje intuicję pewnego związku, czy zależności między elementami wspomnianych zbiorów (elementy wspomnianych zbiorów pozostają w związku albo łączy je pewna zależność, czy też własność lub nie). Najważniejszymi relacjami są relacje dwuargumentowe, tj. między elementami pary zbiorów (opisane w osobnym artykule, w tym funkcje i działania jednoargumentowe); relacje jednoargumentowe to po prostu podzbiory pewnego zbioru.

    Reklama