• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Izometria



    Podstrony: 1 [2] [3] [4] [5]
    Przeczytaj także...
    Przestrzeń euklidesowa – przestrzeń o geometrii euklidesowej. Jest ona naturalnym elementem modeli świata rzeczywistego (łac. geometria = mierzenie ziemi) i stanowi dobre przybliżenie przestrzeni fizycznych w warunkach makroskopowych, jednak nie nadaje się do opisu rzeczywistości w bardzo małych, atomowych, lub bardzo wielkich, astronomicznych, wielkościach. Jednowymiarowa przestrzeń euklidesowa nazywana jest prostą euklidesową, zaś dwuwymiarowa – płaszczyzną euklidesową. Przestrzenie te nazywa się również przestrzeniami afinicznymi euklidesowymi w odróżnieniu od przestrzeni liniowych euklidesowych, znanych szerzej jako przestrzenie unitarne.Przekształcenie liniowe – w algebrze liniowej funkcja między przestrzeniami liniowymi (nad ustalonym ciałem) zachowująca ich strukturę; z punktu widzenia algebry jest to zatem homomorfizm (a z punktu widzenia teorii kategorii – morfizm kategorii) przestrzeni liniowych nad ustalonym ciałem. W przypadku przestrzeni skończonego wymiaru z ustalonymi bazami do opisu przekształceń liniowych między nimi stosuje się zwykle macierze (zob. wybór baz).
    Przykład izometrii: obrót jako złożenie dwóch odbić.

    Izometria (gr. isos – równy, métron – miara; także przekształcenie izometryczne, izomorfizm izometryczny) – funkcja, zachowująca odległości między punktami przestrzeni metrycznej. W geometrii figury, między którymi istnieje izometria (są izometryczne), nazywane są przystającymi.

    Funkcja „na” a. surjekcja pisane też czasami jako suriekcja – funkcja przyjmująca jako swoje wartości wszystkie elementy przeciwdziedziny, tj. której obraz jest równy przeciwdziedzinie.Linia prosta lub prosta – jedno z podstawowych pojęć geometrii, szczególny przypadek nieograniczonej z obydwu stron krzywej o nieskończonym promieniu krzywizny w każdym punkcie.

    Spis treści

  • 1 Geometria euklidesowa
  • 1.1 Parzystość
  • 1.2 Klasyfikacja izometrii
  • 2 Przestrzenie metryczne
  • 3 Przykłady
  • 4 Izometrie liniowe
  • 5 Uogólnienia
  • 6 Twierdzenie Beckmana-Quarlesa
  • 7 Zobacz też
  • 8 Bibliografia


  • Podstrony: 1 [2] [3] [4] [5]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Półprosta - figura geometryczna składająca się z punktów prostej leżących po jednej stronie punktu prostej, który jest nazywany początkiem półprostej. Bardzo często do tak określonej półprostej dołącza się początek półprostej i mówimy o półprostej domkniętej (z początkiem). W przeciwnym wypadku mówimy o półprostej otwartej (bez początku) .
    Obraz – zbiór wszystkich wartości (należących do przeciwdziedziny) przyjmowanych przez funkcję dla każdego elementu danego podzbioru jej dziedziny. Przeciwobraz – zbiór wszystkich elementów dziedziny, które są odwzorowywane na elementy danego podzbioru przeciwdziedziny.
    Przestrzeń metryczna – zbiór z zadaną na nim metryką, tj. funkcją, która określa odległość między każdą parą elementów tego zbioru.
    Jądro – dla danej struktury algebraicznej homomorficzny przeciwobraz elementu neutralnego. Dla danego homomorfizmu f {displaystyle f} jego jądro oznacza się zwykle ker  f {displaystyle {mbox{ker }}f} (od ang. kernel)
    Marek Kordos (ur. 7 marca 1940) – polski matematyk, doktor habilitowany, geometra i historyk matematyki, wykładowca, profesor Uniwersytetu Warszawskiego, popularyzator matematyki, założyciel i redaktor naczelny miesięcznika Delta, autor wielu książek, współzałożyciel Ośrodka Kultury Matematycznej oraz Stowarzyszenia na rzecz Edukacji Matematycznej.
    Okrąg – brzeg koła; zbiór wszystkich punktów płaszczyzny euklidesowej odległych od ustalonego punktu, nazywanego środkiem, o zadaną odległość, nazywaną promieniem.
    Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.

    Reklama

    Czas generowania strony: 0.03 sek.