• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Inwolucja - matematyka



    Podstrony: 1 [2] [3]
    Przeczytaj także...
    Grupa permutacji – grupa wszystkich bijekcji pewnego zbioru w siebie (czyli permutacji) z działaniem składania pełniącego rolę działania grupowego i identycznością jako elementem neutralnym. Elementem odwrotnym do danego jest funkcja (permutacja) odwrotna do danej, która zawsze istnieje z definicji bijekcji.Funkcja wzajemnie jednoznaczna (bijekcja) – funkcja będąca jednocześnie funkcją różnowartościową i "na". Innymi słowy, bijekcja to funkcja (relacja) taka, że każdemu elementowi obrazu odpowiada dokładnie jeden element dziedziny.

    Inwolucjafunkcja, która ma funkcję odwrotną równą jej samej. Równoważnie jest to taka funkcja, która złożona sama ze sobą jest tożsamością.

    Z powyższych definicji wynika, że inwolucja musi być funkcją zbioru w siebie; jeśli jest taką funkcją i dla dowolnego zachodzi warunek bądź to funkcję tę nazywa się inwolucją (druga definicja uogólnia się w teorii kategorii na morfizmy).

    ROT13 - prosty szyfr przesuwający, którego działanie polega na zamianie każdego znaku alfabetu łacińskiego na znak występujący 13 pozycji po nim, przy czym wielkość liter nie ma przy przekształcaniu znaczenia. ROT13 jest przykładem szyfru cezara, opracowanego w Starożytnym Rzymie.Teoria grup – dział algebry, uważany za dość autonomiczną dziedzinę matematyki (w szczególności teoria grup abelowych, czyli przemiennych), który bada własności struktur algebraicznych nazywanych grupami, czyli zbiorów z wyróżnionym łącznym dwuargumentowym działaniem wewnętrznym mającym element neutralny i w którym każdy element jest odwracalny.


    Podstrony: 1 [2] [3]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.
    Inwersja – w geometrii rodzaj przekształcenia geometrycznego; można je sobie wyobrażać jako „wywinięcie” wnętrza ustalonego koła na zewnątrz i „zawinięcie” zewnętrza tego koła do jego wnętrza. Do kluczowych własności inwersji należą: zachowywanie kątów (nieskierowanych) oraz fakt, iż obrazami uogólnionych okręgów (tzn. okręgów lub prostych interpretowanych jako okręgi o nieskończonym promieniu) są uogólnione okręgi. Pojęcie to uogólnia się na przestrzenie wyższego wymiaru, zob. Uogólnienia.
    Rząd – w teorii grup pojęcie oddające intuicję „rozmiaru” (w sensie „rzędu wielkości”) danej grupy i ułatwiające przy tym opis jej podgrup; w szczególności rzędem elementu nazywa się rząd („rozmiar”) najmniejszej (pod)grupy zawierającej ten element.
    Punkt stały odwzorowania pewnego zbioru w siebie - punkt, w którym wartość odwzorowania na argumencie jest równa temu argumentowi. Formalnie:
    Liczby całkowite – liczby naturalne dodatnie N + = { 1 , 2 , 3 , … } {displaystyle mathbb {N} _{+}={1,2,3,dots }} oraz liczby przeciwne do nich { − 1 , − 2 , − 3 , … } {displaystyle {-1,-2,-3,dots }} , a także liczba zero. Uogólnieniem liczb całkowitych są liczby wymierne i tym samym liczby rzeczywiste, szczególnym przypadkiem liczb całkowitych są: liczby naturalne.
    Dopełnienie zbioru – intuicyjnie, zbiór wszystkich elementów (pewnego ustalonego nadzbioru), które do danego zbioru nie należą. W niektórych pozycjach można spotkać się również z alternatywną nazwą uzupełnienie zbioru.
    Teoria mnogości lub inaczej: teoria zbiorów – dział matematyki, a zarazem logiki matematycznej zapoczątkowany przez niemieckiego matematyka Georga Cantora pod koniec XIX wieku. Teoria początkowo wzbudzała wiele kontrowersji, jednak wraz z postępem matematyki zaczęła ona pełnić rolę fundamentu, na którym opiera się większość matematycznych rozważań.

    Reklama

    Czas generowania strony: 0.034 sek.