Intuicjonizm (matematyka)

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Intuicjonizm – pogląd filozoficzny w zakresie istnienia obiektów matematycznych. Intuicjonizm jest prądem blisko związanym z finityzmem i innymi nurtami konstruktywizmu matematycznego. Powstał głównie w związku z pojawieniem się teorii mnogości i paradoksów ujawnionych w jej ramach, jednak jego kontekst jest szerszy i ogólnie obejmuje odpowiedź na problemy wynikające z koncepcji nieskończoności i granicy w matematyce. Jego prekursorem był Leopold Kronecker. Intuicjoniści uważają, że pewne atrybuty niektórych prostych obiektów matematycznych, jak np. liczb naturalnych czy obiektów geometrycznych lub własności przestrzeni, są nam dane i są dostępne poznaniu dzięki intuicjom jakie posiadamy na ich temat, nie potrzeba do nich logika czy doświadczenie. Uważają oni, że treść twierdzeń matematycznych, a zwłaszcza mechanizmy prowadzące do rozwoju wiedzy matematycznej w znacznej mierze dostępne są dzięki intuicji, możliwości wglądu i zrozumienia ich znaczenia dzięki pewnym często pierwotnym intuicjom umysłu matematyków. Głównym przedstawicielem intuicjonizmu był Luitzen Egbertus Jan Brouwer, który proponował budowę spójnej bazy zasad matematycznych w celu budowy systemu podstaw matematyki z pominięciem koncepcji, które intuicjonizm krytykuje, a więc niekonstruktywne dowody, żonglowanie nieskończonością aktualną itp.

Krzysztof Ciesielski (ur. 24 sierpnia 1956) – polski matematyk i popularyzator matematyki, pracownik Katedry Równań Różniczkowych Instytutu Matematyki Uniwersytetu Jagiellońskiego. Syn Romana Ciesielskiego. Prószyński i S-ka to polskie wydawnictwo prasowe i książkowe, działające w latach 1990-2008, oraz nazwa handlowa, pod którą od początku 2009 ukazują się książki wydawane przez wydawnictwo Prószyński Media.

Intuicjonizm neguje prawdziwość niektórych z aksjomatów logiki formalnej, a zwłaszcza aksjomat wyłączonego środka (), twierdząc, że w niektórych przypadkach fakt udowodnienia fałszywości negacji zdania nie implikuje prawdziwości zdania (zobacz: dowód nie wprost), zwłaszcza gdy sensem udowodnionego zdania p jest teza o istnieniu pewnych obiektów (p. dowód niekonstruktywny). Tym samym prawo wyłączonego środka stosuje się zdaniem intuicjonistów tylko do określonych zdań i nie obejmuje zdań stwierdzających o istnieniu obiektów. Intuicjoniści twierdzą, że z faktu, iż – z założenia, że pewne obiekty nie istnieją, wynika sprzeczność – nie wynika jeszcze ich istnienie; jeśli nie podano sposobu konstrukcji takich obiektów, to w istocie nie wykazano ich istnienia (pomimo że założenie o ich nieistnieniu prowadzi do sprzeczności). Tym samym stawiają oni znak zapytania w zagadnieniu istnienia tak podstawowych obiektów jak liczby rzeczywiste niewymierne, czy pojęcie „dowolna liczba”, które jest dla ortodoksyjnego intuicjonisty pozbawione sensu (można za to wypowiadać sądy o dowolnych konkretnych liczbach).

Stanford Encyclopedia of Philosophy (SEP) jest ogólnie dostępną encyklopedią internetową filozofii opracowaną przez Stanford University. Każde hasło jest opracowane przez eksperta z danej dziedziny. Są wśród nich profesorzy z 65 ośrodków akademickich z całego świata. Autorzy zgodzili się na publikację on-line, ale zachowali prawa autorskie do poszczególnych artykułów. SEP ma 1260 haseł (stan na 20 stycznia 2011). Mimo, że jest to encyklopedia internetowa, zachowano standardy typowe dla tradycyjnych akademickich opracowań, aby zapewnić jakość publikacji (autorzy-specjaliści, recenzje wewnętrzne).Leopold Kronecker (ur. 7 grudnia 1823 w Legnicy, zm. 29 grudnia 1891 w Berlinie) – niemiecki matematyk i logik. Brat Hugona Kroneckera.

Intuicjonizm stoi w niejakiej opozycji w stosunku do poglądów upatrujących sensu twierdzeń matematycznych wyłącznie w ich wyprowadzalności z aksjomatów, jak logicyzm, a zwłaszcza formalizm. Szczególnie mocno podkreśla on, że matematyka zawiera pewną treść, zaś udowadnianie i tworzenie nowych twierdzeń jest aktem twórczym nie polegającym wyłącznie na żonglowaniu symbolami matematycznymi.

Zdzisław Pogoda (ur. 1955) – polski matematyk, pracownik Zakładu Historii Matematyki Instytutu Matematyki Uniwersytetu Jagiellońskiego oraz profesor Państwowej Wyższej Szkoły Zawodowej w Nowym Sączu, popularyzator matematyki. Ukończył studia matematyczne na Uniwersytecie Jagiellońskim w roku 1979. Stopień doktora uzyskał w roku 1982 (promotor: Andrzej Zajtz). Specjalizuje się w geometrii różniczkowej i jej zastosowaniach oraz historii i popularyzacji matematyki. Od roku 1991 jest członkiem Komitetu Redakcyjnego miesięcznika Delta, od roku 2013 członkiem Komitetu Redakcyjnego "European Mathematical Society Newsletter". W latach 1993-2006 był członkiem Komitetu Redakcyjnego czasopisma Wiadomości Matematyczne. Od 2014 jest jednym z redaktorów czasopisma Antiquitates Mathematicae. Jest autorem i współautorem licznych artykułów popularnonaukowych oraz kilku książek, a także laureatem prestiżowych nagród za popularyzację nauki.Michał Kazimierz Heller (ur. 12 marca 1936 w Tarnowie) – polski prezbiter katolicki, teolog, profesor nauk filozoficznych specjalizujący się w filozofii przyrody, fizyce, kosmologii relatywistycznej oraz relacji nauka-wiara.

Program intuicjonizmu realizowany przez Brouwera i jego uczniów nie doczekał się wielu kontynuatorów, pomimo pewnych sukcesów i udanej przebudowy niektórych działów matematyki, by pozostawały w zgodzie z zasadniczymi tezami budowniczych szkoły intuicjonistycznej. Współcześnie intuicjonizm nie ma znaczenia dla rozwoju matematyki, zwłaszcza jako program budowy jej fundamentów i pozostaje raczej prywatnym poglądem intuicjonistów na znaczenie tez matematycznych.

Teoria mnogości lub inaczej: teoria zbiorów – dział matematyki, a zarazem logiki matematycznej zapoczątkowany przez niemieckiego matematyka Georga Cantora pod koniec XIX wieku. Teoria początkowo wzbudzała wiele kontrowersji, jednak wraz z postępem matematyki zaczęła ona pełnić rolę fundamentu, na którym opiera się większość matematycznych rozważań.Aksjomat (postulat, pewnik) (gr. αξιωμα [aksíoma] – godność, pewność, oczywistość) – jedno z podstawowych pojęć logiki matematycznej. Od czasów Euklidesa uznawano, że aksjomaty to zdania przyjmowane za prawdziwe, których nie dowodzi się w obrębie danej teorii matematycznej. We współczesnej matematyce definicja aksjomatu jest nieco inna:

Przedstawiciele[ | edytuj kod]

  • Luitzen Egbertus Jan Brouwer
  • Henri Poincaré
  • Arend Heyting


  • Podstrony: 1 [2] [3]




    Warto wiedzieć że... beta

    Logika (gr. λόγος, logos – rozum, słowo, myśl) – wedle klasycznej definicji – nauka o sposobach jasnego i ścisłego formułowania myśli, o regułach poprawnego rozumowania i uzasadniania twierdzeń. Jako taka wraz z retoryką logika stanowiła część filozofii. Współczesna logika wykorzystując metodę formalną znacznie rozszerzyła pole badań włączając w to badania nad matematyką (metamatematyka, logika matematyczna), konstruowanie nowych systemów logicznych (np. logiki wielowartościowe), czysto teoretyczne badania o matematycznym charakterze (np. teoria modeli), zastosowania logiki w informatyce i sztucznej inteligencji (logic for computer science).
    Logicyzm to kierunek w filozofii matematyki, zakładający, że można oprzeć jej podstawy na bazie rachunku logicznego zdań (porównaj logika). W szczególności sprowadza to matematykę jako naukę do szczególnego rodzaju formalnej teorii logicznej implementującej pewien zestaw aksjomatów i wyprowadzającej z nich wnioski w oparciu o pewien zespół definicji (porównaj: formalizm (matematyka)).
    Formalizm to kierunek w filozofii matematyki, będący formą rozwojową logicyzmu, który postuluje, że matematyka jest systemem formalnym, który zawiera aksjomaty (współcześnie rolę tę pełnią aksjomaty teorii mnogości), pewien zespół definicji oraz wyprowadza swoje wnioski w oparciu o te pojęcia korzystając z rachunku logicznego zdań.
    Dowód nie wprost (dowód apagogiczny, dowód sokratejski, łac. reductio ad absurdum - sprowadzenie do sprzeczności), to forma dowodu logicznego, w którym z założenia o nieprawdziwości tezy wyprowadza się sprzeczność ze zdaniem prawdziwym (założenie nieprawdziwości twierdzenia prowadzi do sprzeczności), co pozwala przyjąć że zaprzeczenie tezy jest fałszywe, a sama teza prawdziwa. Inaczej sposób dowodzenia twierdzeń przez wykazanie sprzeczności między zaprzeczeniem dowodzonej tezy a przyjętymi założeniami.
    Arend Heyting (ur. 9 maja 1898 w Amsterdamie, zm. 9 lipca 1980 w Lugano w Szwajcarii) - holenderski matematyk i logik. Przyczynił się do powstania podstaw logiki intuicjonistycznej, czyniąc z tej ostatniej dział logiki matematycznej.
    Platonizm – niejednorodny nurt filozoficzny, opierający się na filozofii Platona (427-347 p.n.e.). W poszczególnych epokach historycznych, rozwijały się różne odłamy platonizmu, niejednokrotnie bardzo się od siebie różniące.
    Finityzm – nurt filozofii matematyki, będący skrajną odmianą konstruktywizmu. Zwolennicy finityzmu uznają istnienie obiektów matematycznych o tyle, o ile są one dane „bezpośrednio” (jak na przykład liczby naturalne), lub dają się skonstruować z takich obiektów za pomocą skończonej liczby kroków. „Umiarkowany” konstruktywizm dopuszcza również konstrukcje o nieskończonej liczbie kroków pod warunkiem, że są one jednoznacznie opisane. W szczególności dozwolone są konstrukcje obiektów oparte na indukcji matematycznej.

    Reklama