• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Indukcja matematyczna



    Podstrony: 1 [2] [3] [4] [5]
    Przeczytaj także...
    Moc zbioru – własność zbioru, która opisuje jego liczebność. Nieformalnie, moc zbioru jest tym większa im większy jest zbiór. Pojęcie mocy zbioru opiera się na pojęciu równoliczności dwóch zbiorów – zbiory A i B są równoliczne, gdy każdy element zbioru A można połączyć w parę z dokładnie jednym elementem zbioru B, innymi słowy istnieje bijekcja (funkcja różnowartościowa i "na") między zbiorami A i B. Zbiory równoliczne mają tę samą moc. Moce zbiorów są konkretnymi obiektami matematycznymi, nazywanymi liczbami kardynalnymi.Definicja (z łac. definitio; od czas. definire: de + finire, "do końca, granicy"; od finis: granica, koniec) – wypowiedź o określonej budowie, w której informuje się o znaczeniu pewnego wyrażenia przez wskazanie innego wyrażenia należącego do danego języka i posiadającego to samo znaczenie.

    Indukcja matematyczna – metoda dowodzenia twierdzeń o prawdziwości nieskończonej liczby stwierdzeń oraz definiowania rekurencyjnego (zob. osobna sekcja). W najbardziej typowych przypadkach dotyczą one liczb naturalnych.

    Indukcja strukturalna to dość powszechnie stosowany wariant indukcji matematycznej, w którym rozważa się pewien zbiór termów uporządkowany następującą relacją: jeden term jest mniejszy od drugiego wtedy i tylko wtedy, gdy jest jego podtermem.Rekurencja, zwana także rekursją (ang. recursion, z łac. recurrere, przybiec z powrotem) to w logice, programowaniu i w matematyce odwoływanie się np. funkcji lub definicji do samej siebie.

    Dowody wykorzystujące metodę indukcji nazywa się dowodami indukcyjnymi, choć wbrew sugestywnej nazwie argumenty oparte na indukcji matematycznej nie są rozumowaniami indukcyjnymi, lecz dedukcyjnymi (podobnie jak cała matematyka). Najstarszy znany dowód indukcyjny, dotyczący sumy początkowych liczb nieparzystych, podał Francesco Maurolico (1494–1575) w pracy Arithmeticorum libri duo („Dwie księgi o arytmetyce”) z 1575 roku.

    Formuła logiczna to określenie dozwolonego wyrażenia w wielu systemach logicznych, m.in. w rachunku kwantyfikatorów oraz w rachunku zdań.Podzbiór – pewna „część” danego zbioru, czyli dla danego zbioru, nazywanego nadzbiorem, zbiór składający się z pewnej liczby jego elementów, np. żadnego, jednego, wszystkich. Pierwszy przypadek nazywa się podzbiorem pustym, drugi – podzbiorem jednoelementowym lub singletonem, trzeci – podzbiorem niewłaściwym.

    Wprowadzenie[]

     Zapoznaj się również z: zbiór nieskończonyliczby naturalne.
    Efekt domina

    Jak dowieść prawdziwości poniższych stwierdzeń?

    Każde z nich zawiera zmienną przebiegającą zbiór nieskończony Każde z tych stwierdzeń jest w istocie zbiorem nieskończenie wielu stwierdzeń. Można zbadać skończoną ich liczbę, gdzie przyjmuje pewne konkretne wartości, przykładowo sprawdzić dla i czuć się przekonanym o prawdziwości tego stwierdzenia, ale daleko takiemu postępowaniu do dowodu. Z drugiej strony nie sposób sprawdzić prawdziwości nieskończenie wielu stwierdzeń w skończonym czasie. Pozostaje więc uciec się do innych metod. Mając na celu dowodzenie stwierdzeń o wszystkich liczbach naturalnych wprowadza się aksjomat – jest to w istocie piąty z aksjomatów Giuseppe Peana (1858–1932) liczb naturalnych – tzw. aksjomat indukcji matematycznej (zob. szczegóły).

    Zbiór induktywny – rodzina zbiorów x {displaystyle x} spełniająca warunkiKwantyfikator – termin przyjęty w matematyce i logice matematycznej na oznaczenie zwrotów: dla każdego, istnieje takie i im pokrewnych, a także odpowiadającym im symbolom wiążacym zmienne w formułach. Są podstawowym elementem w rozwoju logiki pierwszego rzędu.

    Często używaną ilustracją jest efekt domina: ustawiając szereg kamieni domina jeden za drugim można być pewnym przewrócenia wszystkich kamieni (nawet ich nieskończonej liczby), jeśli tylko przewrócono pierwszy kamień, a każdy kamień (z wyjątkiem ostatniego) przewraca kolejny.

    Liczby całkowite – liczby naturalne dodatnie N + = { 1 , 2 , 3 , … } {displaystyle mathbb {N} _{+}={1,2,3,dots }} oraz liczby przeciwne do nich { − 1 , − 2 , − 3 , … } {displaystyle {-1,-2,-3,dots }} , a także liczba zero. Uogólnieniem liczb całkowitych są liczby wymierne i tym samym liczby rzeczywiste, szczególnym przypadkiem liczb całkowitych są: liczby naturalne.Ciąg – w matematyce pojęcie oddające intuicję ponumerowania, czy też uporządkowania elementów zbioru. W zależności od rodzaju elementów zbioru stosuje się różne nazwy: w przypadku liczb mówi się o ciągach liczbowych, bądź bardziej precyzyjnie, np. w przypadku zbioru liczb całkowitych, rzeczywistych czy zespolonych, ciąg nazywa się wtedy odpowiednio ciągiem całkowitoliczbowym, rzeczywistym i zespolonym. Jeśli elementami zbioru są funkcje, to ciąg nazywa się ciągiem funkcyjnym. Ciąg powstały poprzez wybranie elementów innego ciągu nazywa się podciągiem.


    Podstrony: 1 [2] [3] [4] [5]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Język w logice matematycznej to pewien zbiór symboli, przy użyciu których można tworzyć bardziej złożone wyrażenia (na przykład formuły, zdania) według ściśle określonych reguł syntaktycznych. Przyjmuje się, że w danym języku L mogą występować (w dowolnej ilości) symbole funkcyjne, relacyjne oraz symbole stałych. Zdania napisane przy użyciu języków tego typu wystarczają do opisu większości własności dowolnych struktur matematycznych oraz do wyrażenia twierdzeń mówiących o tych strukturach.
    Aksjomat (postulat, pewnik) (gr. αξιωμα [aksíoma] – godność, pewność, oczywistość) – jedno z podstawowych pojęć logiki matematycznej. Od czasów Euklidesa uznawano, że aksjomaty to zdania przyjmowane za prawdziwe, których nie dowodzi się w obrębie danej teorii matematycznej. We współczesnej matematyce definicja aksjomatu jest nieco inna:
    Liczby naturalne – liczby służące podawaniu liczności (trzy osoby, zob. liczebnik główny/kardynalny) i ustalania kolejności (trzecia osoba, zob. liczebnik porządkowy), poddane w matematyce dalszym uogólnieniom (odpowiednio: liczby kardynalne, liczby porządkowe). Badaniem własności liczb naturalnych zajmują się arytmetyka i teoria liczb. Według finitystów, zwolenników skrajnego nurtu filozofii matematyki, są to jedyne liczby, jakimi powinna zajmować się matematyka - słynne jest stwierdzenie propagatora arytmetyzacji wszystkich dziedzin matematyki Leopolda Kroneckera: Liczby całkowite stworzył dobry Bóg. Reszta jest dziełem człowieka.
    Logika matematyczna – dział matematyki, który wyodrębnił się jako samodzielna dziedzina na przełomie XIX i XX wieku, wraz z dążeniem do dogłębnego zbadania podstaw matematyki. Koncentruje się ona na analizowaniu zasad rozumowania oraz pojęć z nim związanych z wykorzystaniem sformalizowanych oraz uściślonych metod i narzędzi matematyki.
    Zasada dobrego uporządkowania – reguła matematyczna mówiąca, że każdy niepusty podzbiór zbioru liczb naturalnych zawiera element najmniejszy.
    Koniunkcja – zdanie złożone mające postać p i q , gdzie p, q są zdaniami. W rachunku zdań koniunkcję zapisuje się symbolicznie jako: p ∧ q {displaystyle p,land ,q,!} . Przez koniunkcję rozumie się też zdanie mające postać p(1) i ... i p(n). Koniunkcję można zdefiniować precyzyjniej jako dwuargumentowe działanie określone w zbiorze zdań, które zdaniom p, q przyporządkowuje zdanie p i q
    Schemat aksjomatu – pewien nieskończony zbiór aksjomatów, który można w łatwy sposób przedstawić, zwykle w logice wyższego rzędu.

    Reklama

    Czas generowania strony: 0.069 sek.