• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Iloczyn skalarny



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Mnożenie przez skalar − jedno z działań dwuargumentowych definiujących przestrzeń liniową w algebrze liniowej (lub ogólniej: moduł w algebrze ogólnej). Mnożenia wektora przez skalar dającego w wyniku wektor nie należy mylić z iloczynem skalarnym (nazywanym niekiedy iloczynem wewnętrznym) dwóch wektorów dającym w wyniku skalar.Przestrzeń euklidesowa – przestrzeń o geometrii euklidesowej. Jest ona naturalnym elementem modeli świata rzeczywistego (łac. geometria = mierzenie ziemi) i stanowi dobre przybliżenie przestrzeni fizycznych w warunkach makroskopowych, jednak nie nadaje się do opisu rzeczywistości w bardzo małych, atomowych, lub bardzo wielkich, astronomicznych, wielkościach. Jednowymiarowa przestrzeń euklidesowa nazywana jest prostą euklidesową, zaś dwuwymiarowa – płaszczyzną euklidesową. Przestrzenie te nazywa się również przestrzeniami afinicznymi euklidesowymi w odróżnieniu od przestrzeni liniowych euklidesowych, znanych szerzej jako przestrzenie unitarne.

    Iloczyn skalarny – pewna forma dwuliniowa na danej przestrzeni liniowej, tj. dwuargumentowa funkcja o szczególnych własnościach przyporządkowująca dwóm wektorom danej przestrzeni liniowej wartość skalarną. Czasami spotyka się również nazwę iloczyn wewnętrzny, który zwykle odnosi się jednak do ogólnych iloczynów skalarnych wprowadzanych w abstrakcyjnych przestrzeniach liniowych nazywanych wtedy przestrzeniami unitarnymi; przestrzenie afiniczne z wyróżnionym iloczynem skalarnym nazywa się przestrzeniami euklidesowymi.

    Moc zbioru – własność zbioru, która opisuje jego liczebność. Nieformalnie, moc zbioru jest tym większa im większy jest zbiór. Pojęcie mocy zbioru opiera się na pojęciu równoliczności dwóch zbiorów – zbiory A i B są równoliczne, gdy każdy element zbioru A można połączyć w parę z dokładnie jednym elementem zbioru B, innymi słowy istnieje bijekcja (funkcja różnowartościowa i "na") między zbiorami A i B. Zbiory równoliczne mają tę samą moc. Moce zbiorów są konkretnymi obiektami matematycznymi, nazywanymi liczbami kardynalnymi.Przekształcenie liniowe – w algebrze liniowej funkcja między przestrzeniami liniowymi (nad ustalonym ciałem) zachowująca ich strukturę; z punktu widzenia algebry jest to zatem homomorfizm (a z punktu widzenia teorii kategorii – morfizm kategorii) przestrzeni liniowych nad ustalonym ciałem. W przypadku przestrzeni skończonego wymiaru z ustalonymi bazami do opisu przekształceń liniowych między nimi stosuje się zwykle macierze (zob. wybór baz).

    Zasadniczym celem wprowadzania iloczynu skalarnego w danej przestrzeni liniowej jest wprowadzenie na niej geometrii euklidesowej, w szczególności kąta między dwoma wektorami, co umożliwia mówienie o ich prostopadłości (nazywanej w tym kontekście ich ortogonalnością, która jest nieznacznym uogólnieniem) oraz obrotu. Iloczyn skalarny stanowi więc pomost między geometrią syntetyczną a geometrią analityczną. Ponieważ trójwymiarowa przestrzeń euklidesowa jest dobrym przybliżeniem świata rzeczywistego w skali makroskopowej, to iloczyn skalarny w niej określony znajduje zastosowanie w fizyce klasycznej, np. mechanice klasycznej (branie rzutów wektora siły wypadkowej jest tego przykładem); z kolei w mechanice kwantowej rozpatruje się (nieskończeniewymiarowe) przestrzenie Hilberta, czyli przestrzenie liniowe (nieskończonego wymiaru) z iloczynem skalarnym i dodatkową strukturą topologiczną (zob. Uogólnienia). Przykładowo praca mechaniczna to wielkość fizyczna wyrażająca się jako iloczyn skalarny siły oraz przemieszczenia

    Mechanika klasyczna – dział mechaniki w fizyce opisujący ruch ciał (kinematyka), wpływ oddziaływań na ruch ciał (dynamika) oraz badaniem równowagi ciał materialnych (statyka). Mechanika klasyczna oparta jest na prawach ruchu (zasadach dynamiki) sformułowanych przez Isaaca Newtona, dlatego też jest ona nazywana „mechaniką Newtona” (Principia). Mechanika klasyczna wyjaśnia poprawnie zachowanie się większości ciał w naszym otoczeniu.Przestrzeń topologiczna – podstawowe pojęcie topologii; zbiór wyposażony w strukturę (tzw. topologię) wyróżniającą pewną rodzinę jego podzbiorów (tzw. zbiory otwarte), co umożliwia określenie czy dany punkt leży „blisko”, czy „daleko” od danego podzbioru (w jego domknięciu lub poza nim) mimo braku pojęcia odległości (metryki).
    W artykule opisano iloczyn skalarny określony na rzeczywistych przestrzeniach współrzędnych oraz wymiaru wraz z ortonormalną bazą standardową, nazywany też zwykłym, standardowym (w przestrzeniach afinicznych nazywa się go także euklidesowym); niżej określenia te będą pomijane (użyto notacji ustalonej w artykule o przestrzeniach współrzędnych). Uogólnienia opisano w oddzielnej sekcji.

    Definicja i własności[]

     Zapoznaj się również z: forma dwuliniowa.

    Standardowy iloczyn skalarny definiuje się wzorem

    Prostopadłość – cecha geometryczna dwóch prostych lub płaszczyzn (albo prostej i płaszczyzny), które tworzą przystające kąty przyległe.Wielomian – wyrażenie algebraiczne złożone ze zmiennych i stałych połączonych działaniami dodawania, odejmowania, mnożenia i podnoszenia do potęgi o stałym wykładniku naturalnym.

    w przypadku macierzowym (wykorzystując własności mnożenia macierzy) można go zapisać w postaci

    Przestrzeń metryczna – zbiór z zadaną na nim metryką, tj. funkcją, która określa odległość między każdą parą elementów tego zbioru.Geometria syntetyczna - czyli geometria czysta - dział geometrii, w którym nie używa się metod algebraicznych i obliczeniowych do dowodzenia twierdzeń i rozwiązywania problemów. Wybitnymi znawcami geometrii syntetycznej byli między innymi Euklides, Apoloniusz z Pergi, Michel Chasles i Jakob Steiner.

    gdzie oznacza transpozycję macierzy Wzór ten jest użyteczny także w ogólnym przypadku, lecz w przypadku przestrzeni liniowych wzór ten opisuje formę dwuliniową, tj. funkcję mającą szereg własności, które służą często jako abstrakcyjna, tzn. niezależna od współrzędnych, definicja iloczynu skalarnego (zob. przestrzeń unitarna). Wśród najważniejszych można wymienić:

    Fizyka klasyczna – określenie wszystkich gałęzi fizyki, które w swych badaniach z rozmaitych względów nie uwzględniają efektów kwantowych. Obejmuje między innymi:Forma półtoraliniowa albo funkcjonał półtoraliniowy – w algebrze liniowej i analizie funkcjonalnej przekształcenie półtoraliniowe danej zespolonej przestrzeni liniowej w ciało jej skalarów, czyli dwuargumentowy funkcjonał, który jest liniowy ze względu na jeden parametr (zob. funkcjonał liniowy) i antyliniowy ze względu na drugi.
  • przemienność (symetryczność),
  • rozdzielność względem dodawania wektorów (dwuaddytywność),
  • zgodność z mnożeniem przez skalar (dwujednorodność),
  • niezdegenerowanie,
  • dodatnia określoność,
  • Jeśli to wektory oraz nazywa się ortogonalnymi. Wprost z definicji wynika, że jeśli choć jeden czynnik jest wektorem zerowym, to iloczyn skalarny również jest zerowy; może się jednak zdarzyć, iż choć oraz (zob. Przykłady); mówi się wtedy czasem o prostopadłości tych wektorów. Wektory zerowe są więc jedynym elementem odróżniającym ortogonalność od prostopadłości (geometrycznie wektor zerowy odpowiada punktowi, można więc uważać, że dowolny punkt jest prostopadły do wektora, odcinka czy prostej); w oznaczeniach nie odróżnia się zwykle jednego pojęcia od drugiego, oznaczając oba symbolem

    Odwzorowanie równokątne, wiernokątne lub konforemne – w matematyce funkcja zachowująca kąty. Zwykle jest to funkcja między obszarami płaszczyzny zespolonej.Forma liniowa albo funkcjonał liniowy (kowektor) – w algebrze liniowej przekształcenie liniowe danej przestrzeni liniowej w ciało jej skalarów, czyli funkcjonał, który jest liniowy, tj. addytywny i jednorodny. Pojęcie to uogólnia się bez zmian na przypadek modułów nad pierścieniami.

    Wynika stąd, że iloczyn skalarny, w przeciwieństwie do mnożenia liczb, nie ma własności skracania (tj. z równości nie wynika , o ile tylko ). Otóż jeśli , to z prawa rozdzielności zachodzi , co jest możliwe wtedy, gdy są ortogonalne (tj. jeden z tych wektorów jest zerowy: lub bądź są one prostopadłe, tzn. ).

    Mechanika kwantowa (teoria kwantów) – teoria praw ruchu obiektów świata mikroskopowego. Poszerza zakres mechaniki na odległości czasoprzestrzenne i energie, dla których przewidywania mechaniki klasycznej nie sprawdzały się. Opisuje przede wszystkim obiekty o bardzo małych masach i rozmiarach - np. atom, cząstki elementarne itp. Jej granicą dla średnich rozmiarów lub średnich energii czy pędów jest mechanika klasyczna.Macierz przekształcenia liniowego – w algebrze liniowej macierz będąca wygodnym zapisem we współrzędnych przekształcenia liniowego dwóch skończenie wymiarowych przestrzeni liniowych nad tym samym ciałem z ustalonymi bazami. Dzięki temu, że mnożeniu macierzy oraz domnażaniu wektorów odpowiada składanie przekształceń i obliczanie wartości przekształcenia na wspomnianym wektorze, teoria macierzy staje się wygodnym językiem opisu przekształceń (w tym endomorfizmów) liniowych wyżej opisanych przestrzeni; jeśli nie wskazano żadnych baz, to każdą macierz o elementach z ciała można traktować jako przekształcenie liniowe między dwoma przestrzeniami współrzędnych.


    Podstrony: 1 [2] [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Ten artykuł zawiera pewne przykłady przestrzeni liniowych. W artykule „przestrzeń liniowa” znajdują się definicje używanych tutaj pojęć. Zapoznaj się również z: wymiar, baza.
    Przestrzeń Hilberta – w analizie funkcjonalnej rzeczywista lub zespolona przestrzeń unitarna (tj. przestrzeń liniowa nad ciałem liczb rzeczywistych lub zespolonych z abstrakcyjnym iloczynem skalarnym), zupełna ze względu na indukowaną (poprzez normę) z iloczynu skalarnego tej przestrzeni metrykę. Jako unormowana i zupełna, każda przestrzeń Hilberta jest przestrzenią Banacha, a przez to przestrzenią Frécheta, a stąd lokalnie wypukłą przestrzenią liniowo-topologiczną. Przestrzenie te noszą nazwisko Davida Hilberta, który wprowadził je pod koniec XIX wieku; są one podstawowym narzędziem wykorzystywanym w wielu dziedzinach fizyki, m.in. w mechanice kwantowej (np. przestrzeń Foka nad przestrzenią Hilberta).
    Przemieszczenie (wektor przesunięcia) – wektor łączący położenie początkowe z końcowym. Dla dowolnego ruchu krzywoliniowego wartość tego wektora jest mniejsza bądź równa drodze pokonanej przez ciało. Równość ma miejsce wówczas, gdy promień krzywizny toru dąży do nieskończoności (ruch prostoliniowy).
    Rozdzielność działań jest własnością pierścienia (a więc i ciała) określającą powiązanie dwóch operatorów: addytywnego (nazywanego zwykle dodawaniem) i multiplikatywnego (zwykle mnożenie).
    Geometria analityczna – dział geometrii zajmujący się badaniem figur geometrycznych metodami analitycznymi (obliczeniowymi) i algebraicznymi. Złożone rozważania geometryczne zostają w geometrii analitycznej sprowadzone do rozwiązywania układów równań, które opisują badane figury. Przedmiotem badań geometrii analitycznej jest zasadniczo przestrzeń euklidesowa i własności jej podzbiorów, choć wiele wyników można uogólnić na dowolne, skończenie wymiarowe przestrzenie liniowe.
    Funkcje cyklometryczne (funkcje kołowe) – funkcje odwrotne do funkcji trygonometrycznych ograniczonych do pewnych przedziałów.
    Przestrzeń liniowa lub wektorowa – w matematyce zbiór obiektów (nazywanych "wektorami"), które mogą być, nieformalnie rzecz ujmując, skalowane i dodawane. Formalnie jest to zbiór z określonymi dwoma działaniami: dodawaniem elementów tej przestrzeni (wektorów) i mnożeniem przez elementy ustalonego ciała, które związane są ze sobą poniższymi aksjomatami. Przestrzenie liniowe to podstawowy obiekt badań algebry liniowej i analizy funkcjonalnej. Znajdują zastosowanie niemal we wszystkich gałęziach matematyki, naukach ścisłych i inżynierii.

    Reklama

    Czas generowania strony: 0.082 sek.