• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Homotopia



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Przestrzeń euklidesowa – przestrzeń o geometrii euklidesowej. Jest ona naturalnym elementem modeli świata rzeczywistego (łac. geometria = mierzenie ziemi) i stanowi dobre przybliżenie przestrzeni fizycznych w warunkach makroskopowych, jednak nie nadaje się do opisu rzeczywistości w bardzo małych, atomowych, lub bardzo wielkich, astronomicznych, wielkościach. Jednowymiarowa przestrzeń euklidesowa nazywana jest prostą euklidesową, zaś dwuwymiarowa – płaszczyzną euklidesową. Przestrzenie te nazywa się również przestrzeniami afinicznymi euklidesowymi w odróżnieniu od przestrzeni liniowych euklidesowych, znanych szerzej jako przestrzenie unitarne.Przestrzeń topologiczna – podstawowe pojęcie topologii; zbiór wyposażony w strukturę (tzw. topologię) wyróżniającą pewną rodzinę jego podzbiorów (tzw. zbiory otwarte), co umożliwia określenie czy dany punkt leży „blisko”, czy „daleko” od danego podzbioru (w jego domknięciu lub poza nim) mimo braku pojęcia odległości (metryki).

    Homotopiaciągłe przejście między dwoma przekształceniami ciągłymi przestrzeni topologicznych, tj. takie, za pomocą którego można w jednostce czasu w wyniku ciągłej deformacji z jednego przekształcenia otrzymać drugie. Działem matematyki, w którym się je rozważa, jest teoria homotopii, gałąź topologii algebraicznej.

    Definicja intuicyjna: Powierzchnia (ściślej: brzeg) kuli. Zbiór punktów oddalonych o pewną zadaną odległość (promień sfery) od wybranego punktu (środek sfery).Okrąg jednostkowy – okrąg o promieniu jednostkowym, tzn. równym 1. Często, szczególnie w trygonometrii, „okrąg jednostkowy” oznacza okrąg o promieniu 1 i środku w początku, tzn. punkcie ( 0 , 0 ) {displaystyle (0,0),} , układu współrzędnych kartezjańskich płaszczyzny euklidesowej. Często oznacza się go symbolem S 1 {displaystyle mathrm {S} ^{1}} ; jego uogólnieniem na wyższe wymiary jest sfera jednostkowa.

    Pojęcie homotopii prowadzi do homotopijnej równoważności, relacji równoważności, która pozwala na bardziej elastyczną niż relacja homeomorfizmu klasyfikację przestrzeni topologicznych zachowując przy tym ważne ich własności w obrębie jednej klasy równoważności (klasy homotopii).

    Homotopia między kubkiem a obwarzankiem (torusem).

    Definicja[ | edytuj kod]

    Niech będą przekształceniami ciągłymi określonymi na przestrzeniach topologicznych oraz będzie przedziałem jednostkowym. Jeżeli istnieje ciągłe odwzorowanie takie, że oraz dla to nazywa się je homotopią przekształceń i i oznacza same przekształcenia określa się wtedy jako homotopijne.

    Droga – w topologii, ciągłe przekształcenie z przedziału jednostkowego w przestrzeń topologiczną. Pętlą nazywa się drogę, której początek i koniec pokrywają się. Ich parametr, szczególnie przy homotopiach, nazywa się niekiedy czasem.Kazimierz Kuratowski (ur. 2 lutego 1896 w Warszawie, zm. 18 czerwca 1980 w Warszawie), polski matematyk, jeden z czołowych przedstawicieli warszawskiej szkoły matematycznej.

    Rodziny przekształceń[ | edytuj kod]

    Homotopia określa rodzinę przekształceń taką, że ciągłą ze względu na każdy ze swoich argumentów, przy czym oraz

    Relacja równoważności – zwrotna, symetryczna i przechodnia relacja dwuargumentowa określona na pewnym zbiorze utożsamiająca ze sobą w pewien sposób jego elementy, co ustanawia podział tego zbioru na rozłączne podzbiory według tej relacji. Podobnie każdy podział zbioru niesie ze sobą informację o pewnej relacji równoważności.Przestrzeń parazwarta – przestrzeń Hausdorffa o tej własności, że w każde jej pokrycie otwarte można wpisać pokrycie lokalnie skończone (tzn. takie, że dla każdego punktu x {displaystyle x} przestrzeni X {displaystyle X} istnieje takie otoczenie otwarte U x {displaystyle U_{x}} , że U x {displaystyle U_{x}} ma niepusty przekrój ze skończoną liczbą elementów tego pokrycia). Słowa "wpisać" w definicji nie można zastąpić słowem "wybrać". Niektórzy autorzy (na przykład Kenneth Kunen) pomijają założenie bycia przestrzenią Hausdorffa w definicji parazwartości. Pojęcie przestrzeni parazwartej zostało po raz pierwszy wprowadzone przez Jeana Dieudonné w 1944 roku.

    Homotopia wyznacza również rodzinę dróg łączących z dla

    Relacja symetryczna – relacja, która jeśli zachodzi dla pary ( x , y ) {displaystyle (x,y)} , to zachodzi też dla pary ( y , x ) {displaystyle (y,x)} .Język francuski (fr. langue française lub français) – język pochodzenia indoeuropejskiego z grupy języków romańskich. Jako językiem ojczystym posługuje się nim ok. 80 mln ludzi: ok. 65 mln Francuzów, ok. 4,5 mln Belgów (czyli 42%), ok. 1,5 mln Szwajcarów (czyli 20%), a także ok. 8 mln mieszkańców kanadyjskich prowincji Québec, Ontario i Nowy Brunszwik. Ok. 201 milionów osób na całym świecie używa francuskiego jako języka głównego (oszacowanie z 2009 r. według Organisation mondiale de la Francophonie), a 72 miliony jako drugiego języka codziennego (w tym krajach Maghrebu). Wiele z tych osób mieszka w krajach, w których francuski jest jednym z języków urzędowych, bądź powszechnie używanych (54 kraje). Paradoksalnie, w Algierii, Maroku, i Tunezji, gdzie nie ma statusu języka urzędowego, jest bardziej rozpowszechniony niż w wielu krajach Czarnej Afryki, w których jest jedynym językiem urzędowym.

    Ściągalność i gwiaździstość[ | edytuj kod]

    Przestrzeń nazywa się ściągalną, jeżeli jest homotopijna z przekształceniem stałym dla pewnego punktu

    Przedział jednostkowy – przedział [ 0 , 1 ] {displaystyle [0,1]} liczb rzeczywistych. We wszystkich swych potencjalnych znaczeniach jest on prawie zawsze oznaczany literą I {displaystyle I} . Odgrywa on fundamentalną rolę w teorii homotopii, gałęzi topologii.Library of Congress Control Number (LCCN) – numer nadawany elementom skatalogowanym przez Bibliotekę Kongresu wykorzystywany przez amerykańskie biblioteki do wyszukiwania rekordów bibliograficznych w bazach danych i zamawiania kart katalogowych w Bibliotece Kongresu lub u innych komercyjnych dostawców.

    Dla podzbiorów przestrzeni euklidesowej, gdzie określona jest różniczkowalność można nakładać dodatkowe warunki na ściągalność zbioru. Obszar nazywa się ściągalnym różniczkowalnie do punktu jeśli istnieje odwzorowanie ciągłe klasy takie, że dla każdego

    Homomorfizm grup – przekształcenie zachowujące strukturę grup, tj. homomorfizm grup jako struktur algebraicznych. Z punktu widzenia teorii kategorii homomorfizmy grup są klasy morfizmami kategorii grup, z tego też względu nazywane są one czasem morfizmami grup.Karol Borsuk (ur. 8 maja 1905 w Warszawie, zm. 24 stycznia 1982 w Warszawie) – polski matematyk, jeden z czołowych przedstawicieli warszawskiej szkoły matematycznej.

    Obszar określa się jako gwiaździsty względem punktu jeśli dla każdego odcinek łączący punkt z zawiera się w tj.

    Krzysztof Maurin /fon. "Morę"/ (ur. 14 lipca 1923 w Warszawie) – polski matematyk i fizyk matematyczny, od 1966 r. profesor zwyczajny matematyki na Wydziale Fizyki Uniwersytetu Warszawskiego, obecnie emerytowany.Funkcja ciągła – funkcja o następującej intuicyjnej własności: „mała” zmiana argumentu niesie ze sobą „małą” zmianę wartości; lub też: wartości funkcji dla „bliskich” sobie argumentów również będą sobie „bliskie”.

    Łatwo wykazać, że zbiór gwiaździsty względem punktu jest ściągalny do Żądane odwzorowanie jest postaci Dla obszarów ściągalnych zachodzi lemat Poincarégo.

    Grupa podstawowa – rozważana w topologii grupa klas homotopii pętli w przestrzeni topologicznej z wyróżnionym punktem (lub łukowo spójnej), pozwalająca na użycie względnie łatwych metod algebraicznych do dowodzenia skomplikowanych twierdzeń topologicznych.Funkcja tożsamościowa a. identycznościowa – w matematyce funkcja danego zbioru w siebie, która każdemu argumentowi przypisuje jego samego; intuicyjnie funkcja, która „nic nie zmienia”.

    Relacja równoważności[ | edytuj kod]

    Dla ustalonych przestrzeni topologicznych relacja homotopii w przestrzeni funkcji ciągłych jest relacją równoważności. Jej klasy równoważności nazywa się klasami homotopii.

    Roman Duda (ur. 27 lutego 1935 w Starych Brodach) – polski matematyk, profesor i były rektor Uniwersytetu Wrocławskiego, senator I kadencji.Teoria homotopii - dział topologii algebraicznej powiązany z teorią homologii. Teoria homotopii zajmuje się badaniem "kształtu" przestrzeni topologicznych, porównując je z dobrze znanymi przestrzeniami typu (wielowymiarowe) kule, torusy. Podstawowym narzędziem tej teorii jest pojęcie homotopii i homotopijnej równoważności odwzorowań ciągłych. Teoria homotopii jest silnym narzędziem współczesnej geometrii różniczkowej. Początków teorii homotopii można doszukiwać się w pracach Henri Poincarégo. Spory wkład w rozwój tej teorii wniósł polski matematyk, Karol Borsuk.

    Zwrotność jest oczywista, symetria polega na odwróceniu przechodzenia po przedziale przechodniość wynika ze składania odwzorowań: pierwsza połowa służy do przejścia po pierwszym odwzorowaniu, druga – po drugim, złożenie odwzorowań ciągłych jest ciągłe.

    Wydawnictwo Naukowe PWN SA – wydawnictwo z siedzibą w Warszawie, założone w 1951, w obecnej formie prawnej działające od 1997. Wydawnictwo Naukowe PWN SA stanowi jednostkę dominującą Grupy kapitałowej PWN, w skład której wchodzi kilkanaście przedsiębiorstw, głównie wydawnictw.Relacja przechodnia (tranzytywna) – relacja, która jeśli zachodzi dla pary ( x , y ) {displaystyle (x,y)} oraz pary ( y , z ) {displaystyle (y,z)} , to zachodzi też dla pary ( x , z ) {displaystyle (x,z)} .

    Przykłady[ | edytuj kod]

  • Jeśli to funkcje i są zawsze homotopijne między sobą. Wystarczy przyjąć
  • Jeśli -wymiarowa sfera jednostkowa, to powyższe nie jest prawdą. Na przykład identyczność i funkcja stała nie są homotopijne.
  • Lemat Poincarégo – jedno z najważniejszych twierdzeń teorii form różniczkowych, zwyczajowo zwane lematem. Twierdzenie zostało sformułowane przez Henri Poincarégo.Homeomorfizm – jedno z fundamentalnych pojęć topologii. Intuicyjnie - przekształcenie, które dowolnie ściska, rozciąga, wygina lub skręca figurę, nie robi jednak w niej dziur, nie rozrywa jej ani nie skleja jej fragmentów. Inaczej mówiąc, przekształcenie to na ogół zmienia pierwotny kształt i rozmiar figury, zawsze jednak zachowuje potocznie rozumianą ciągłość i spoistość.


    Podstrony: 1 [2] [3] [4]




    Warto wiedzieć że... beta

    Topologia algebraiczna – dział matematyki, który zajmuje się badaniem przestrzeni topologicznych przy użyciu metod o charakterze algebraicznym.
    Gemeinsame Normdatei (GND) – kartoteka wzorcowa, stanowiąca element centralnego katalogu Niemieckiej Biblioteki Narodowej (DNB), utrzymywanego wspólnie przez niemieckie i austriackie sieci biblioteczne.
    Matematyka (z łac. mathematicus, od gr. μαθηματικός mathēmatikós, od μαθηματ-, μαθημα mathēmat-, mathēma, „nauka, lekcja, poznanie”, od μανθάνειν manthánein, „uczyć się, dowiedzieć”; prawd. spokr. z goc. mundon, „baczyć, uważać”) – nauka dostarczająca narzędzi do otrzymywania ścisłych wniosków z przyjętych założeń, zatem dotycząca prawidłowości rozumowania. Ponieważ ścisłe założenia mogą dotyczyć najróżniejszych dziedzin myśli ludzkiej, a muszą być czynione w naukach ścisłych, technice a nawet w naukach humanistycznych, zakres matematyki jest szeroki i stale się powiększa.
    Relacja zwrotna – relacja, która zachodzi dla każdej pary postaci ( x , x ) {displaystyle (x,x),} .
    Fundamenta Mathematicae” – czasopismo matematyczne założone w 1920 w Warszawie przez polskich matematyków Zygmunta Janiszewskiego, Stefana Mazurkiewicza i Wacława Sierpińskiego, członków warszawskiej szkoły matematycznej.
    Przestrzeń normalna i przestrzeń T4 to terminy w topologii opisujące tę samą lub bardzo pokrewne własności oddzielania.

    Reklama

    Czas generowania strony: 0.045 sek.