• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Gwiazda neutronowa



    Podstrony: [1] 2 [3] [4]
    Przeczytaj także...
    Zapadanie grawitacyjne (kolaps) – zjawisko kurczenia się skupisk materii pod wpływem siły grawitacji. Jeden z najbardziej powszechnych procesów zachodzących we Wszechświecie w najróżniejszych skalach przestrzennych i czasowych, począwszy od formowania się gromad galaktyk, galaktyk, a skończywszy na narodzinach, ewolucji i śmierci gwiazd. Zapadanie obłoków gazu zachodzi, gdy nie jest możliwe zachowanie równowagi hydrostatycznej, tzn. kiedy ciśnienie całkowite gazu nie jest w stanie zrównoważyć oddziaływań grawitacyjnych. Stan taki osiągany jest przez dowolne skupisko materii, które przekroczy masę krytyczną, zwaną masą Jeansa.Akrecja – w astronomii terminem tym określa się opadanie rozproszonej materii na powierzchnię ciała niebieskiego w wyniku działania grawitacji. Zjawisku temu może towarzyszyć wydzielanie dużej ilości energii w postaci promieniowania elektromagnetycznego, gdy opadająca materia wyświeca część utraconej grawitacyjnej energii potencjalnej. Szczególnie widowiskowa jest akrecja na obiekty zwarte – białe karły, gwiazdy neutronowe czy czarne dziury. Uważa się, że mechanizmem „zasilającym” aktywne jądra galaktyk jest właśnie akrecja materii na supermasywną czarną dziurę.
    Fizyka[ | edytuj kod]
    Pulsar Vela

    Materia skorupy na powierzchni gwiazdy neutronowej składa się z jąder żelaza (Fe) i swobodnych elektronów. Duże ciśnienie podczas zapadania jądra supernowej oraz malejące odległości między jądrami i elektronami powodują, że te ostatnie łączą się z protonami podczas fazy zwanej neutronizacją materii, skutkiem czego powstaje ośrodek składający się głównie z neutronów. Gdy gęstość we wnętrzu gwiazdy przekroczy 4·10 g/cm³, materia wygląda jak ciągły stan neutronów. Ten proces nazywany jest także ściekaniem neutronów.

    Kwark górny (ang. up, oznaczenie u) – jeden z kwarków, cząstka będąca podstawowym budulcem materii. Wchodzi w skład protonu i neutronu.NASA (National Aeronautics and Space Administration) (pl. Narodowa Agencja Aeronautyki i Przestrzeni Kosmicznej) – agencja rządu Stanów Zjednoczonych odpowiedzialna za narodowy program lotów kosmicznych, ustanowiona 29 lipca 1958 r. na mocy National Aeronautics and Space Act, zastępując poprzednika – National Advisory Committee for Aeronautics. Jest wydziałem Departamentu Obrony USA i jest mu bezpośrednio podległa.

    Swobodne neutrony są nietrwałe i rozpadają się po 15 minutach; tzw. (rozpad β). Produktem rozpadu neutronu są: proton, elektron i antyneutrino:

    Wszystkie te cząstki są fermionami i podlegają statystyce Fermiego-Diraca, określającej sposób obsadzania stanów energetycznych, oraz zasadzie Pauliego, która stosuje się do wszystkich liczb kwantowych (a nie wyłącznie do spinu).

    Gwiazda zdegenerowana to gwiazda, która w swym wnętrzu zawiera materię zdegenerowaną, w której ciśnienie nie ma charakteru termicznego. Do tych gwiazd należą białe karły, gwiazdy neutronowe oraz hipotetyczne gwiazdy kwarkowe.Lew Dawidowicz Landau (ros. Лев Давидович Ландау, ur. 22 stycznia 1908 w Baku, zm. 1 kwietnia 1968 w Moskwie) – fizyk rosyjski, laureat nagrody Nobla z fizyki (1962) za teorie materii skondensowanej, w szczególności ciekłego helu.

    Gwiazdy neutronowe zawdzięczają nazwę dominującemu składnikowi, jakim są neutrony, ale zawierają również elektrony, protony i mezony. Istnienie takich obiektów wynika z równowagi między zapadaniem grawitacyjnym materii a ciśnieniem wytworzonym przez zdegenerowany gaz fermionowy neutronów, protonów i elektronów. Zdegenerowany gaz fermionowy podlega wciąż statystyce Fermiego-Diraca (a nie Boltzmanna), a ciśnienie nie znika, nawet gdy temperatura gwiazdy dąży do zera. Średnia gęstość waha się w granicach

    Gwiazda dziwna (gwiazda kwarkowa) – hipotetyczny typ gwiazdy zbudowanej z materii dziwnej. Istnienie takiej ultragęstej materii jest spekulowane wewnątrz bardzo masywnych gwiazd neutronowych. Modele teoretyczne sugerują, że gdy materia jądrowa w gwieździe (neutrinium – materia jądrowa w równowadze ze względu na słaby rozpad β) znajduje się pod wpływem dostatecznie dużego ciśnienia pochodzącego od grawitacji gwiazdy, zachodzi w niej proces dezintegracji nukleonów do materii kwarkowej. Gwiazda kwarkowa jest układem zawierającym plazmę kwarkową w równowadze ze względu na rozpad β (podobnie jak rozpad neutronów w gwieździe neutronowej), w skład której wchodzą kwarki (u, d, s) i gluony. Obecność gluonów opisuje stała B (nazywana stałą worka) oraz zmiana masy kwarków (masa efektywna). W chromodynamice (QCD) kwarki zyskują w plazmie kwarkowo-gluonowej znaczne masy (mu*=md* ~ 330 MeV/c², ms* ~ 450 MeV/c² (masy konstytuentne)). Swobodne kwarki gdy są ekstremalnie blisko siebie (swoboda asymptotyczna) posiadają niewielkie masy (mu*=md* ~ 7 MeV/c², ms* ~ 150 MeV/c² (masy bieżące)).Lich, PSR 1257+12 – pulsar milisekundowy, odległy od Ziemi o 980 lat świetlnych, wokół którego krążą pierwsze odkryte planety pozasłoneczne. Układ składa się z gwiazdy centralnej – pulsara i trzech planet odkrytych przez polskiego astronoma, Aleksandra Wolszczana.

    Gęstość materii w symetrycznych jądrach atomowych, w których jest podobnego rzędu:

    Hiperony (z gr. hyper "ponad") – grupa ciężkich cząstek (barionów), zawierających przynajmniej jeden kwark dziwny (s). Zaliczane są w związku z tym do cząstek dziwnych.Rozpad beta – jeden ze sposobów rozpadu jądra atomowego. Jest to przemiana jądrowa, której skutkiem jest przemiana nukleonu w inny nukleon, zachodząca pod wpływem oddziaływania słabego. Wyróżnia się dwa rodzaje tego rozpadu: rozpad β i rozpad β. W wyniku tego rozpadu zawsze wydzielana jest energia, którą unoszą produkty rozpadu. Część energii rozpadu może pozostać zmagazynowana w jądrze w postaci energii jego wzbudzenia, dlatego rozpadowi beta towarzyszy często emisja promieniowania gamma.

    Tak duża gęstość wynika jednak raczej z istnienia sił dwójkowania, które zapewniają większą trwałość jąder izotopów radioaktywnych.

    Magnetar – obiekt zwarty (gwiazda neutronowa lub hipotetyczna gwiazda kwarkowa), posiadający bardzo silne pole magnetyczne, B>10 T (10 Gs), emitujący w sposób regularny (pulsy) lub nieregularny (błyski) promieniowanie gamma oraz promieniowanie rentgenowskie.Równanie stanu jest związkiem między parametrami (funkcjami stanu) układu termodynamicznego, takimi jak ciśnienie P {displaystyle P} , gęstość masy ρ {displaystyle ho } (w przypadku relatywistycznym gęstość masy-energii i gęstość numeryczna cząstek), temperatura T {displaystyle T} , entropia s {displaystyle s} , energia wewnętrzna u {displaystyle u} , który można zapisać w postaci następującego równania:

    W laboratorium nie wytworzono tak dużych gęstości. Nie jest znane równanie stanu gęstej materii jądra gwiazdy neutronowej. Do czasu odkrycia PSR J1614-2230 uważano, że w bardzo gęstym jądrze może zachodzić kondensacja kaonów, których sama obecność w gwieździe mogłaby modyfikować równanie stanu czy przejście fazowe do materii kwarkowej (gwiazdy dziwne), które dostarcza energii przemiany do materii gwiazdy, ale biorąc pod uwagę masę PSR J1614-2230, jest to mało prawdopodobne. Obiekt o masie PSR J1614-2230 (1,97 ± 0,04 M☉), zawierający materię dziwną, najprawdopodobniej zapadłby się w czarną dziurę, zanim powstałaby z niego gwiazda neutronowa.

    Jocelyn Bell Burnell (ur. jako Susan Jocelyn Bell 15 lipca 1943 w Belfaście) – brytyjska astrofizyczka. Jako doktorantka, pracująca pod kierunkiem Antony’ego Hewisha, Jocelyn Bell jako pierwsza zaobserwowała pulsary. Za to odkrycie Hewish (wraz z Martinem Ryle’em) otrzymał w 1974 roku Nagrodę Nobla w dziedzinie fizyki.Pulsar rentgenowski – typ rentgenowskiego układu podwójnego składający się z gwiazdy neutronowej o bardzo silnym polu magnetycznym i gwiazdy ciągu głównego.

    Młoda, gorąca gwiazda neutronowa (gwiazda protoneutronowa) może pochłaniać w jądrze neutrina, dla których Ziemia jest prawie przezroczysta. Zwiększa to ciśnienie gwiazdy, jej rozmiar, ale prawdopodobnie zmniejsza także degenerację materii w gwieździe. Ucieczka neutrin z gwiazdy destabilizuje tę chwilową równowagę i mogłaby prowadzić do wybuchu supernowej, gdyby nie to, że brak tam niezdegenerowanej materii, która mogłaby napędzić falę uderzeniową, rozdmuchującą w klasycznych supernowych otoczkę progenitora.

    Zdegenerowana materia to rodzaj materii o bardzo dużej gęstości, w której główny składnik ciśnienia wiąże się z zakazem Pauliego. Ciśnienie należy tu rozumieć jako parametr przeciwstawiający się zajęciu przez cząstki mniejszej objętości. Cząstki (elektrony, neutrony) nie mogą zająć mniejszej objętości z powodu zajęcia już wszystkich stanów energetycznych o dopuszczalnej energii.Fale Tkaczenki – fale obserwowane w cieczach w stanie nadciekłości i, ogólniej, w kondensatach Bosego-Einsteina, polegające na poprzecznych drganiach linii wirów w ośrodku.

    Stwierdzono nagłe zmiany tempa rotacji gwiazd neutronowych, co zinterpretowano jako skutek zmiany momentu bezwładności cieczy neutronowej, wypełniającej wnętrze takiego obiektu. W pierwszej połowie lat osiemdziesiątych usiłowano wyjaśnić zjawisko, badając tzw. fale Tkaczenki.

    Wnętrza gwiazd neutronowych nie są radioaktywne, natomiast na tempo rozpadów jąder w skorupie mogą mieć wpływ efekty relatywistyczne, wynikające z ogólnej teorii względności (w trakcie rozpadów radioaktywnych jądra tracą symetrię sferyczną). Przypuszcza się, że jądro gwiazdy neutronowej jest nadciekłe.

    Statystyka Fermiego-Diraca – statystyka dotycząca fermionów, cząstek o spinie połówkowym, które obowiązuje zakaz Pauliego. Zgodnie z zakazem Pauliego w danym stanie kwantowym nie może znajdować się więcej niż jeden fermion. Statystyka Fermiego-Diraca oparta jest również na założeniu nierozróżnialności cząstek.Żelazo (Fe, łac. ferrum) – metal z VIII grupy pobocznej o dużym znaczeniu gospodarczym, znane od czasów starożytnych.

    Budowa wewnętrzna[ | edytuj kod]

    Gwiazda neutronowa otoczona jest cienką atmosferą. Wyróżnia się cztery obszary samej gwiazdy:

  • skorupa (otoczka) zewnętrzna,
  • skorupa wewnętrzna,
  • jądro zewnętrzne,
  • jądro wewnętrzne.
  • Materia skorupy zewnętrznej składa się z jonów i elektronów, które są silnie zdegenerowane. W dolnej części tej warstwy, sięgającej kilkuset metrów, gęstości są na tyle wysokie, że występuje wyciek neutronów.

    W skorupie wewnętrznej materia zbudowana jest z elektronów, swobodnych neutronów i jąder atomowych bogatych w neutrony. Wraz ze wzrostem gęstości zwiększa się udział swobodnych neutronów, zaś kształt jąder atomowych przestaje być sferyczny. Przy gęstości rzędu 1,5·10 g/cm³ na dnie skorupy wewnętrznej jądra atomowe znikają, a materia składa się ze swobodnych neutronów, protonów i elektronów. Grubość tej warstwy wynosi około 1 km.

    Temperatura – jedna z podstawowych wielkości fizycznych (parametrów stanu) w termodynamice. Temperatura jest związana ze średnią energią kinetyczną ruchu i drgań wszystkich cząsteczek tworzących dany układ i jest miarą tej energii.Kwark – cząstka elementarna, fermion mający ładunek koloru (czyli podlegający oddziaływaniom silnym). Według obecnej wiedzy cząstki elementarne będące składnikami materii można podzielić na dwie grupy. Pierwszą grupę stanowią kwarki, drugą grupą są leptony. Każda z tych grup zawiera po sześć cząstek oraz ich antycząstki, istnieje więc sześć rodzajów kwarków oraz sześć rodzajów antykwarków.

    W jądrze gwiazdy materia składa się już przede wszystkim z neutronów, z niewielką domieszką protonów, elektronów i mionów. Granica między jądrem zewnętrznym a wewnętrznym jest umownie określona gęstością około 5,5·10 g/cm³, powyżej której struktura materii nie jest już dokładnie określona równaniem stanu, wynikającym ze znanych praw fizyki jądrowej. Jądro wewnętrzne występuje w najbardziej masywnych gwiazdach neutronowych, podczas gdy w mało masywnych warstwa ta może nie być obecna.

    Proton, p (z gr. πρῶτον – "pierwsze") − trwała cząstka subatomowa z grupy barionów o ładunku +1 i masie spoczynkowej równej ok. 1 u.Masa Słońca M ⊙ {displaystyle M_{odot }} – pozaukładowa jednostka używana w astronomii do określania mas obiektów astronomicznych (gwiazd, gromad, galaktyk itp.).

    Rozważa się kilka możliwości składu materii gęstej w wewnętrznym jądrze gwiazdy neutronowej i wynikające stąd równania stanu:

  • materia nukleonowa o składzie takim samym jak w jądrze zewnętrznym,
  • materia hiperonowa zawierająca domieszkę hiperonów Λ i Σ,
  • kondensaty pionów,
  • kondensaty kaonów,
  • materia kwarkowa złożona z kwarków u i d oraz kwarków dziwnych s.
  • Teoretyczne modele budowy gwiazd neutronowych weryfikuje się obserwacyjnie, mając do dyspozycji tzw. krzywe chłodzenia, czyli zmiany temperatury powierzchniowej gwiazdy w funkcji czasu. W początkowym etapie swego życia gwiazda neutronowa chłodzi się dzięki emisji neutrin, zaś tempo ich produkcji silnie zależy od stanu materii w jądrze gwiazdy. Pojemność cieplna wnętrza gwiazdy i emisja neutrin zależy od tego, czy w jądrze występuje nadciekłość. Powierzchnia gwiazdy chłodzi się dzięki emisji fotonów z powierzchni, głównie w zakresie rentgenowskim. Przewodnictwo cieplne na powierzchni gwiazdy i jej temperatura zależą także od obecności pola magnetycznego oraz ewentualnej warstwy materii zakreowanej z towarzysza, jeśli gwiazda znajduje się w układzie podwójnym.

    Biały karzeł – niewielki (rzędu rozmiarów Ziemi) obiekt astronomiczny składający się ze zdegenerowanej materii, emitujący m.in. promieniowanie widzialne. Powstaje po ustaniu reakcji jądrowych w gwieździe o małej lub średniej masie. Mało masywne gwiazdy (od 0,08 do 0,4 M☉) nie osiągają w trakcie swojej ewolucji warunków wystarczających do zapłonu helu w reakcjach syntezy termojądrowej i powstają z nich białe karły helowe. Średnio masywne gwiazdy (od 0,4 do ok. 4 mas Słońca) spalają hel dając białe karły węglowe, lub węglowo-tlenowe. Pozostałością gwiazd o masach w zakresie 4-8 mas Słońca (na ciągu głównym) są białe karły z domieszką tlenu, neonu i magnezu.Wilhelm Heinrich Walter Baade (ur. 24 marca 1893, zm. 25 czerwca 1960) – niemiecki astronom. Wyemigrował do USA w 1931.

    Inną istotną informację daje wyznaczenia masy gwiazdy, ponieważ maksymalna możliwa masa gwiazdy neutronowej zależy od równania stanu. W ogólności bardzo duża masa gwiazdy, 2–2,5 masy Słońca, wskazuje raczej na obecność w jej wnętrzu materii nukleonowej.

    Supernowa – w astronomii termin określający kilka rodzajów kosmicznych eksplozji, które powodują powstanie na niebie niezwykle jasnego obiektu, który już po kilku tygodniach bądź miesiącach staje się niemal niewidoczny. Istnieją dwie możliwe drogi prowadzące do takiego wybuchu: w jądrze masywnej gwiazdy przestały zachodzić reakcje termojądrowe i pozbawiona ciśnienia promieniowania gwiazda zaczyna zapadać się pod własnym ciężarem, lub też biały karzeł tak długo pobierał masę z sąsiedniej gwiazdy, aż przekroczył masę Chandrasekhara, co spowodowało eksplozję termojądrową. W obydwu przypadkach, następująca eksplozja supernowej z ogromną siłą wyrzuca w przestrzeń większość lub całą materię gwiazdy. Utworzona w ten sposób mgławica jest bardzo nietrwała i ulega całkowitemu zniszczeniu już po okresie kilkudziesięciu tysięcy lat, znikając zupełnie bez śladu. Z tego powodu w Drodze Mlecznej znamy obecnie zaledwie 265 pozostałości po supernowych, choć szacunkowa liczba tego rodzaju wybuchów w ciągu ostatnich kilku miliardów lat jest rzędu wielu milionów.Promieniowanie rentgenowskie (promieniowanie rtg, promieniowanie X, promienie X) – rodzaj promieniowania elektromagnetycznego, które jest generowane podczas wyhamowywania elektronów. Długość fali mieści się w zakresie od 10 pm do 10 nm. Zakres promieniowania rentgenowskiego znajduje się pomiędzy nadfioletem i promieniowaniem gamma.


    Podstrony: [1] 2 [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    University of Cambridge (nieformalnie: Cambridge University, po polsku Uniwersytet Cambridge lub po prostu Cambridge) – drugi po Oksfordzie najstarszy angielski uniwersytet, założony w 1209 roku. Znajduje się w Cambridge w środkowej Anglii. Uważany za jeden z najlepszych uniwersytetów w Europie i na świecie. Uniwersytety Oksfordzki i Cambridge określane są wspólną nazwą Oxbridge.
    Promieniowanie kosmiczne – promieniowanie złożone, zarówno korpuskularne jak i elektromagnetyczne, docierające do Ziemi z otaczającej ją przestrzeni kosmicznej. Korpuskularna część promieniowania składa się głównie z protonów (90% cząstek), cząstek alfa (9%), elektronów (ok 1%) i nielicznych cięższych jąder. Promieniowanie docierające bezpośrednio z przestrzeni kosmicznej nazywamy promieniowaniem kosmicznym pierwotnym. Cząstki docierające do Ziemi w wyniku reakcji promieniowania kosmicznego pierwotnego z jądrami atomów gazów atmosferycznych, to promieniowanie wtórne.
    Library of Congress Control Number (LCCN) – numer nadawany elementom skatalogowanym przez Bibliotekę Kongresu wykorzystywany przez amerykańskie biblioteki do wyszukiwania rekordów bibliograficznych w bazach danych i zamawiania kart katalogowych w Bibliotece Kongresu lub u innych komercyjnych dostawców.
    Materia dziwna to termin, którym określamy materię oddziałującą silnie, złożoną z cząstek dziwnych (zawierających kwark dziwny s). Dziwna materia jądrowa zbudowana jest z barionów dziwnych nazywanych hiperonami (np. Λ, Σ, Ξ) lub mezonów dziwnych (np. kaonów). Tego rodzaju materia hiperonowa może występować we wnętrzu gwiazd neutronowych.
    arXiv (duże X w nazwie reprezentuje grecką literę χ (chi), nazwę należy więc czytać ‘archiv’) – elektroniczne archiwum naukowych preprintów. Gromadzi artykuły z następujących dziedzin: fizyki z astronomią, matematyki, informatyki, statystyki i biologii (quantitative biology) i matematyki finansowej. Archiwum powstało w roku 1991 w Los Alamos National Laboratory, początkowo dostępne było pod adresem xxx.lanl.gov. Obecnie funkcjonuje przy Uniwersytecie Cornella.
    Kaon (mezon K) – najlżejsza cząstka o niezerowej dziwności, mezon K jest bozonem o spinie 0. Antycząstką kaonu jest antykaon.
    Materia – w potocznym znaczeniu: ogół obiektywnie istniejących przedmiotów fizycznych, poznawalnych zmysłami. W fizyce termin "materia" ma kilka znaczeń.

    Reklama

    Czas generowania strony: 0.04 sek.