• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Grupoid



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Moc zbioru – własność zbioru, która opisuje jego liczebność. Nieformalnie, moc zbioru jest tym większa im większy jest zbiór. Pojęcie mocy zbioru opiera się na pojęciu równoliczności dwóch zbiorów – zbiory A i B są równoliczne, gdy każdy element zbioru A można połączyć w parę z dokładnie jednym elementem zbioru B, innymi słowy istnieje bijekcja (funkcja różnowartościowa i "na") między zbiorami A i B. Zbiory równoliczne mają tę samą moc. Moce zbiorów są konkretnymi obiektami matematycznymi, nazywanymi liczbami kardynalnymi.Podstawowe twierdzenie arytmetyki – ważne twierdzenie teorii liczb o rozkładzie liczb naturalnych na czynniki pierwsze.

    Grupoid (rzadziej magma) – zbiór z określonym na nim dowolnym działaniem dwuargumentowym, czyli pewną funkcją .

    Zazwyczaj zamiast stosuje się notację multiplikatywną lub po prostu rzadziej notację addytywną Działanie opisywane notacją multiplikatywną nazywa się mnożeniem, a addytywną – dodawaniem. Notację i terminologię addytywną stosuje się zazwyczaj, gdy działanie grupoidu jest przemienne.

    Liczba pierwsza – liczba naturalna większa od 1, która ma dokładnie dwa dzielniki naturalne: jedynkę i siebie samą, np.Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.

    Grupoid jest algebrą której sygnatura składa się z jednej operacji 2-arnej.

    Podgrupoidy i zbiory generujące[ | edytuj kod]

    Niepusty podzbiór grupoidu nazywany jest podgrupoidem grupoidu jeśli z i wynika, że

    Algebra ogólna – obiekt matematyczny będący przedmiotem badań algebry uniwersalnej. Czasami algebra uniwersalna nazywana jest algebrą ogólną, wówczas rozważane w niej obiekty nazywa się zwykle algebrami abstrakcyjnymi lub po prostu algebrami.Liczby naturalne – liczby służące podawaniu liczności (trzy osoby, zob. liczebnik główny/kardynalny) i ustalania kolejności (trzecia osoba, zob. liczebnik porządkowy), poddane w matematyce dalszym uogólnieniom (odpowiednio: liczby kardynalne, liczby porządkowe). Badaniem własności liczb naturalnych zajmują się arytmetyka i teoria liczb. Według finitystów, zwolenników skrajnego nurtu filozofii matematyki, są to jedyne liczby, jakimi powinna zajmować się matematyka - słynne jest stwierdzenie propagatora arytmetyzacji wszystkich dziedzin matematyki Leopolda Kroneckera: Liczby całkowite stworzył dobry Bóg. Reszta jest dziełem człowieka.

    Jeśli jest podzbiorem grupoidu to część wspólna wszystkich podgrupoidów zawierających jest najmniejszym podgrupoidem grupoidu zawierającym zbiór grupoid ten nazywany jest podgrupiodem grupoidu generowanym przez i oznaczany czasem przez symbol Na przykład w grupoidzie liczb naturalnych z działaniem dodawania podgrupoid generowany przez {2} jest podgrupoidem liczb parzystych. W grupoidzie liczb naturalnych z działaniem mnożenia podgrupoidem generowanym przez {2} jest podgrupoid potęg liczby 2 o wykładnikach całkowitych nieujemnych.

    Półgrupa – Grupoid ⟨ A , ⊙ ⟩ {displaystyle langle A,odot angle } , którego działanie ⊙ {displaystyle odot } jest łączne, czyli:Działanie dwuargumentowe a. binarne – w algebrze działanie algebraiczne o argumentowości równej 2, czyli funkcja przypisująca dwóm elementom inny; wszystkie elementy mogą pochodzić z innych zbiorów.

    W grupoidzie liczb naturalnych z działaniem dodawania zbiorem generującym jest {1}. W grupoidzie liczb naturalnych z działaniem mnożenia zbiorem generującym jest zbiór liczb pierwszych. Wynika to z podstawowego twierdzenia arytmetyki.

    Zbiór – pojęcie pierwotne teorii zbiorów (znanej szerzej jako teoria mnogości; za jej twórcę uważa się Georga Cantora) leżące u podstaw całej matematyki; intuicyjnie jest to nieuporządkowany zestaw różnych obiektów, czy też kolekcja niepowtarzających się komponentów bez wyróżnionej kolejności.Funkcja (łac. functio, -onis, „odbywanie, wykonywanie, czynność”) – dla danych dwóch zbiorów X i Y przyporządkowanie każdemu elementowi zbioru X dokładnie jednego elementu zbioru Y. Oznacza się ją na ogół f, g, h itd.

    Rząd grupoidu[ | edytuj kod]

    Jeśli jest grupoidem, to moc zbioru nazywamy jego rzędem. Jeśli rząd grupoidu jest skończony, możemy jego działanie opisać za pomocą tablicy Cayleya. Grupoid reszt z dzielenia przez 4 jest rzędu 4, bo = {0, 1, 2, 3}. Grupoid przekształceń zbioru 2-elementowego (z działaniem składania przekształceń), też jest rzędu 4.

    Funkcja wzajemnie jednoznaczna (bijekcja) – funkcja będąca jednocześnie funkcją różnowartościową i "na". Innymi słowy, bijekcja to funkcja (relacja) taka, że każdemu elementowi obrazu odpowiada dokładnie jeden element dziedziny.Monoid - półgrupa, której działanie ma element neutralny. Formalnie, monoid to algebra ( S , e , ∗ ) {displaystyle (S,e,*)} , sygnatury ( 0 , 2 ) {displaystyle (0,2)} , gdzie S jest niepustym zbiorem, natomiast


    Podstrony: 1 [2] [3] [4]




    Warto wiedzieć że... beta

    Potęgowanie – działanie dwuargumentowe będące uogólnieniem wielokrotnego mnożenia elementu przez siebie. Potęgowany element nazywa się podstawą, zaś liczba mnożeń, zapisywana zwykle w indeksie górnym po prawej stronie podstawy, nosi nazwę wykładnika. Wynik potęgowania to potęga elementu.
    Tablica Cayleya - dla danego grupoidu (G,·), macierz kwadratowa, której wiersze i kolumny są ponumerowane elementami grupoidu (w takiej samej kolejności), a w komórce znajdującej się na przecięciu a-tego wiersza i b-tej kolumny znajduje się iloczyn ab. Tablice Cayleya konstruuje się na ogół dla grupoidów rzędu skończonego, ale czasem korzystnie jest rozważać tablice Cayleya grupoidów rzędu nieskończonego. Nazwa pojęcia pochodzi od nazwiska brytyjskiego matematyka, Arthura Cayleya, który wprowadził je w 1854 w jednej ze swoich prac.
    Część wspólna zbiorów A i B (przekrój, iloczyn mnogościowy, przecięcie zbiorów) – zbiór, który zawiera te i tylko te elementy, które należą jednocześnie do zbioru A i do zbioru B. Część wspólną definiuje się także dla dowolnych niepustych rodzin zbiorów.

    Reklama

    Czas generowania strony: 0.766 sek.