• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Grupa przemienna



    Podstrony: [1] 2 [3] [4]
    Przeczytaj także...
    Moc zbioru – własność zbioru, która opisuje jego liczebność. Nieformalnie, moc zbioru jest tym większa im większy jest zbiór. Pojęcie mocy zbioru opiera się na pojęciu równoliczności dwóch zbiorów – zbiory A i B są równoliczne, gdy każdy element zbioru A można połączyć w parę z dokładnie jednym elementem zbioru B, innymi słowy istnieje bijekcja (funkcja różnowartościowa i "na") między zbiorami A i B. Zbiory równoliczne mają tę samą moc. Moce zbiorów są konkretnymi obiektami matematycznymi, nazywanymi liczbami kardynalnymi.Przekształcenie liniowe – w algebrze liniowej funkcja między przestrzeniami liniowymi (nad ustalonym ciałem) zachowująca ich strukturę; z punktu widzenia algebry jest to zatem homomorfizm (a z punktu widzenia teorii kategorii – morfizm kategorii) przestrzeni liniowych nad ustalonym ciałem. W przypadku przestrzeni skończonego wymiaru z ustalonymi bazami do opisu przekształceń liniowych między nimi stosuje się zwykle macierze (zob. wybór baz).
    Własności[ | edytuj kod]
  • Jeżeli jest przemienna, to dla każdego oraz zachodzi
  • Każda podgrupa grupy abelowej jest normalna, dlatego z każdej z nich można utworzyć grupę ilorazową. Podgrupy, ilorazy i iloczyny proste grup przemiennych są przemienne.
  • Jeżeli jest liczbą naturalną, a elementem grupy abelowej w zapisie addytywnym, to można zdefiniować jako (n czynników) oraz W ten sposób staje się modułem nad pierścieniem liczb całkowitych W rzeczywistości, moduły nad mogą być utożsamiane z grupami abelowymi.
  • Twierdzenia o grupach abelowych (które są modułami nad dziedziną ideałów głównych ) mogą być częstokroć uogólnione do twierdzeń o modułach nad dowolnymi dziedzinami ideałów głównych. Typowym przykładem jest klasyfikacja skończenie generowanych grup abelowych.
  • Jeżeli homomorfizmami między grupami abelowymi, to ich suma określona „punktowo” wzorem również jest homomorfizmem. (Nie jest to prawdą, jeśli nie jest abelowa). Zbiór wszystkich homomorfizmów grupowych z w sam staje się grupą przemienną.
  • Podobnie do wymiaru przestrzeni liniowych, każda grupa przemienna ma rangę. Jest ona zdefiniowana jako liczba kardynalna największego zbioru liniowo niezależnych elementów grupy. Liczby całkowite i liczby wymierne, jak również każda podgrupa liczb wymiernych mają rangę równą jeden.
  • Jeżeli dla każdego zachodzi (rząd każdego elementu jest co najwyżej 2), to jest przemienna. Jeżeli dla każdego zachodzi i to nie musi być abelowa (przykład to grupa macierzy kwadratowych trójkątnych górnych, które na głównej przekątnej mają same jedynki, a nad główną przekątną mają elementy z ciała gdzie jest liczbą pierwszą dzielącą n).
  • Skończone grupy przemienne[ | edytuj kod]

    Twierdzenie o klasyfikacji skończonych grup przemiennych mówi, że każda skończona grupa przemienna może być wyrażona jako suma prosta podgrup cyklicznych rzędu będącego potęgą liczby pierwszej. Jest to przypadek szczególny twierdzenia o klasyfikacji skończenie generowanych grup przemiennych w przypadku, gdy rozważana grupa ma beztorsyjną rangę równą zeru.

    Algebra Boole’a – algebra ogólna stosowana w matematyce, informatyce teoretycznej oraz elektronice cyfrowej. Jej nazwa pochodzi od nazwiska matematyka, filozofa i logika George’a Boole’a. Teoria algebr Boole’a jest działem matematyki na pograniczu teorii częściowego porządku, algebry, logiki matematycznej i topologii.Arytmetyka modularna, arytmetyka reszt – w matematyce system liczb całkowitych, w którym liczby „zawijają się” po osiągnięciu pewnej wartości nazywanej modułem, często określanej terminem modulo (skracane mod). Pierwszy pełny wykład arytmetyki reszt przedstawił Carl Friedrich Gauss w Disquisitiones Arithmeticae („Badania arytmetyczne”, 1801).

    Grupa jest izomorficzna z iloczynem prostym przez wtedy i tylko wtedy, gdy i względnie pierwsze.

    Liczba pierwsza – liczba naturalna większa od 1, która ma dokładnie dwa dzielniki naturalne: jedynkę i siebie samą, np.Macierz trójkątna to macierz kwadratowa, której wszystkie współczynniki pod główną przekątną lub wszystkie współczynniki nad tą przekątną są równe zero. Należy zauważyć, że kwadratowa macierz schodkowa jest zawsze macierzą trójkątną.

    Dlatego można zapisać dowolną skończoną grupę abelową jako iloczyn prosty postaci

    na dwa różne sposoby:

    Zbiór formuł zdaniowych T danego języka pierwszego rzędu nazywamy teorią pierwszego rzędu (lub systemem dedukcyjnym) wtw T spełnia następujący warunek:Teoria grup – dział algebry, uważany za dość autonomiczną dziedzinę matematyki (w szczególności teoria grup abelowych, czyli przemiennych), który bada własności struktur algebraicznych nazywanych grupami, czyli zbiorów z wyróżnionym łącznym dwuargumentowym działaniem wewnętrznym mającym element neutralny i w którym każdy element jest odwracalny.
  • gdzie liczby są potęgami liczb pierwszych
  • gdzie dzieli które dzieli i tak dalej, aż do
  • Na przykład może być wyrażona jako suma prosta dwóch podgrup cyklicznych rzędów odpowiednio 3 i 5: To samo można powiedzieć o dowolnej grupie przemiennej rzędu 15, co prowadzi do ciekawego wniosku, iż wszystkie grupy przemienne rzędu 15 są izomorficzne.

    Skończenie generowana grupa przemienna – w algebrze abstrakcyjnej grupa przemienna (abelowa), której zbiór generatorów jest skończony. W szczególności, każda skończona grupa abelowa jest skończenie generowana.Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.

    Innym przykładem jest fakt, że każda grupa abelowa rzędu 8 jest izomorficzna z (liczby całkowite od 0 do 7 z dodawaniem modulo 8), (nieparzyste liczby całkowite od 1 do 15 z mnożeniem modulo 16) bądź

    Grupa Galois – grupa związana z określonym rodzajem rozszerzenia ciała. Badanie rozszerzeń ciał (i wielomianów je produkujących) za pomocą grup Galois nazywa się teorią Galois, której nazwa pochodzi od nazwiska Évariste’a Galois, który pierwszy zastosował wspomnianą metodę. Saharon Szelach (hebr. שהרן שלח, en. Saharon Shelah) (ur. 3 lipca 1945 w Jerozolimie) – izraelski matematyk, laureat wielu nagród (w tym Nagrody Wolfa z matematyki w 2001 roku), profesor na Uniwersytecie Hebrajskim w Jerozolimie oraz Uniwersytecie Rutgersa w Stanach Zjednoczonych.

    Zobacz też listę małych grup zawierającą skończone grupy przemienne rzędu 16 lub mniejszego.

    Automorfizmy skończonych grup przemiennych[ | edytuj kod]

    Twierdzenie klasyfikacji można zastosować do zliczania (czasami również wyznaczenia) automorfizmów danej skończonej grupy przemiennej Aby tego dokonać, należy skorzystać z faktu (który nie zostanie tu udowodniony), że jeżeli rozkłada się na sumę prostą podgrup o względnie pierwszych rzędach, to

    Liniowa niezależność – w algebrze liniowej własność algebraiczna rodziny wektorów danej przestrzeni liniowej mówiąca, że żaden z nich nie może być zapisany jako kombinacja liniowa skończenie wielu innych wektorów ze zbioru. Rodzinę wektorów, która nie jest liniowo niezależna, nazywa się liniowo zależną.Leopold Kronecker (ur. 7 grudnia 1823 w Legnicy, zm. 29 grudnia 1891 w Berlinie) – niemiecki matematyk i logik. Brat Hugona Kroneckera.

    Wtedy twierdzenie o klasyfikacji mówi, że aby wyznaczyć grupę automorfizmów grupy wystarczy wyznaczyć grupy automorfizmów p-podgrup Sylowa (tj. wszystkich sum prostych podgrup cyklicznych, z których rząd każdej jest potęgą ). Dalej jest ustalone i założono, że wykładniki czynników cyklicznych p-podgrup Sylowa są ułożone w porządku rosnącym:

    Algebra ogólna – obiekt matematyczny będący przedmiotem badań algebry uniwersalnej. Czasami algebra uniwersalna nazywana jest algebrą ogólną, wówczas rozważane w niej obiekty nazywa się zwykle algebrami abstrakcyjnymi lub po prostu algebrami.Rozstrzygalność (decydowalność) problemu matematycznego to następująca jego właściwość: istnieje algorytm, który oblicza odpowiedź na dowolne pytanie stawiane przez problem.

    dla pewnego Szukane są automorfizmy grupy

    Przestrzeń liniowa lub wektorowa – w matematyce zbiór obiektów (nazywanych "wektorami"), które mogą być, nieformalnie rzecz ujmując, skalowane i dodawane. Formalnie jest to zbiór z określonymi dwoma działaniami: dodawaniem elementów tej przestrzeni (wektorów) i mnożeniem przez elementy ustalonego ciała, które związane są ze sobą poniższymi aksjomatami. Przestrzenie liniowe to podstawowy obiekt badań algebry liniowej i analizy funkcjonalnej. Znajdują zastosowanie niemal we wszystkich gałęziach matematyki, naukach ścisłych i inżynierii.Homomorfizm – funkcja odwzorowująca jedną algebrę ogólną (czyli strukturę algebraiczną taką jak grupa, pierścień czy przestrzeń wektorowa) w drugą, zachowująca przy tym odpowiadające sobie operacje. Jest to podstawowe narzędzie w badaniu i porównywaniu algebr.

    Przypadek szczególny, dla czyli taki w którym istnieje tylko jeden cykliczny czynnik mający potęgę będącą liczbą pierwszą w p-podgrupie Sylowa Wtedy można skorzystać z teorii automorfizmów skończonych grup cyklicznych. Kolejny przypadek szczególny obejmuje dowolne ale dla Tutaj jest postaci

    Liczby całkowite – liczby naturalne dodatnie N + = { 1 , 2 , 3 , … } {displaystyle mathbb {N} _{+}={1,2,3,dots }} oraz liczby przeciwne do nich { − 1 , − 2 , − 3 , … } {displaystyle {-1,-2,-3,dots }} , a także liczba zero. Uogólnieniem liczb całkowitych są liczby wymierne i tym samym liczby rzeczywiste, szczególnym przypadkiem liczb całkowitych są: liczby naturalne.Ranga grupy abelowej – w algebrze, uogólnienie pojęcia rangi grupy abelowej wolnej na dowolne grupy abelowe; można ją postrzegać jako najmniejszą liczbę elementów generujących daną grupę abelową. Ranga grupy abelowej wyznacza rozmiar największej grupy abelowej wolnej zawartej w tej grupie. Jeżeli grupa jest beztorsyjna, to rangę można traktować analogicznie do wymiaru przestrzeni liniowej: jest to w istocie wymiar najmniejszej przestrzeni liniowej nad ciałem liczb wymiernych, w której można zanurzyć daną grupę abelową.

    tak więc elementy tej podgrupy można postrzegać jako składające się na n-wymiarową przestrzeń liniową nad skończonym ciałem o elementach Automorfizmami tej grupy są więc odwracalne przekształcenia liniowe, dlatego

    Teoria mnogości lub inaczej: teoria zbiorów – dział matematyki, a zarazem logiki matematycznej zapoczątkowany przez niemieckiego matematyka Georga Cantora pod koniec XIX wieku. Teoria początkowo wzbudzała wiele kontrowersji, jednak wraz z postępem matematyki zaczęła ona pełnić rolę fundamentu, na którym opiera się większość matematycznych rozważań.Moduł – struktura algebraiczna będąca uogólnieniem przestrzeni liniowej. Ponieważ grupy abelowe można postrzegać jako moduły nad pierścieniem liczb całkowitych, to teoria modułów znajduje zastosowanie w wielu działach algebry i innych dziedzinach matematyki.

    o których łatwo pokazuje się, że mają rząd

    Alfred Tarski wł. Alfred Tajtelbaum (ur. 14 stycznia 1901 w Warszawie, zm. 26 października 1983 w Berkeley, Kalifornia, USA) – polski logik pracujący od 1939 r. w Stanach Zjednoczonych. Twórca m.in. teorii modeli i semantycznej definicji prawdy, uważany jest współcześnie za jednego z najwybitniejszych logików wszech czasów.Wanda Szmielew, z domu Montlak (ur. 5 kwietnia 1918 w Warszawie, zm. 27 sierpnia 1976 tamże) – polska matematyk, twórczyni warszawskiej szkoły podstaw geometrii.

    W najogólniejszym przypadku, gdzie tak jak i są dowolne, wyznaczenie grupy automorfizmów jest trudniejsze. Wiadomo jednak, że zdefiniowanie

    Hipoteza continuum (skr. CH, od ang. continuum hypothesis) – postawiona przez Georga Cantora hipoteza teorii mnogości dotycząca mocy zbiorów liczb naturalnych i liczb rzeczywistych.Grupa (czwórkowa) Kleina – najmniejsza niecykliczna grupa abelowa. Jej nazwa pochodzi od nazwiska Felixa Kleina, niemieckiego matematyka, który jako pierwszy opisał jej własności w wydanej w roku 1884 książce Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade („Wykłady o ikosaedrze i rozwiązywaniu równań piątego stopnia”).

    oraz

    Liczby naturalne – liczby służące podawaniu liczności (trzy osoby, zob. liczebnik główny/kardynalny) i ustalania kolejności (trzecia osoba, zob. liczebnik porządkowy), poddane w matematyce dalszym uogólnieniom (odpowiednio: liczby kardynalne, liczby porządkowe). Badaniem własności liczb naturalnych zajmują się arytmetyka i teoria liczb. Według finitystów, zwolenników skrajnego nurtu filozofii matematyki, są to jedyne liczby, jakimi powinna zajmować się matematyka - słynne jest stwierdzenie propagatora arytmetyzacji wszystkich dziedzin matematyki Leopolda Kroneckera: Liczby całkowite stworzył dobry Bóg. Reszta jest dziełem człowieka.Pierścień – struktura formalizująca własności algebraiczne liczb całkowitych oraz arytmetyki modularnej; intuicyjnie zbiór, którego elementy mogą być bez przeszkód dodawane, odejmowane i mnożone, lecz niekoniecznie dzielone. Badanie pierścieni umożliwiło uogólnienie innych pojęć matematycznych takich, jak np. liczby pierwsze (przez ideały pierwsze), wielomiany, ułamki oraz rozwinięcie teorii podzielności i wskazania przy tym najogólniejszej struktury, w której możliwe jest stosowanie algorytmu Euklidesa (tzw. pierścień Euklidesa). Dział matematyki opisujący te struktury nazywa się teorią pierścieni.

    daje w szczególności oraz

    Homomorfizm grup – przekształcenie zachowujące strukturę grup, tj. homomorfizm grup jako struktur algebraicznych. Z punktu widzenia teorii kategorii homomorfizmy grup są klasy morfizmami kategorii grup, z tego też względu nazywane są one czasem morfizmami grup.Grupa ilorazowa – w teorii grup zbiór warstw danej grupy względem jej pewnej podgrupy normalnej, tj. szczególny podział grupy (na niepuste podzbiory) uwzględniający jej strukturę, który sam tworzy grupę z naturalnie określonym działaniem pochodzącym od grupy wyjściowej. Z teoriomnogościowego punktu widzenia jest to zbiór ilorazowy, w którym wprowadzono zgodne z działaniem w grupie działanie na klasach relacji równoważności wyznaczającej wspomniany podział.

    Można sprawdzić, że wzór ten uogólnia rzędy z poprzednich przykładów (zob. [Hillar, Rhea]).

    Aksjomaty Zermela-Fraenkla, aksjomatyka Zermela-Fraenkla, w skrócie: aksjomaty(ka) ZF – powszechnie przyjmowany układ aksjomatów teorii mnogości zaproponowany przez Ernsta Zermela w 1904 roku i później uzupełniony przez Abrahama Fraenkla.Liczby względnie pierwsze – liczby całkowite, które nie mają innych poza jedynką wspólnych dzielników w rozkładzie na czynniki pierwsze lub, równoważnie, ich największym wspólnym dzielnikiem jest jedność; te, w których żadna para nie ma wspólnych dzielników w rozkładzie poza jedynką lub, równoważnie, których największy wspólny dzielnik dla dowolnej pary wynosi jeden, nazywa się parami względnie pierwszymi.

    Związki z innymi działami matematyki[ | edytuj kod]

    Zbiór wszystkich grup abelowych wraz z homomorfizmem między nimi stanowi kategorię prototyp kategorii abelowej.

    Prawie wszystkie dobrze znane struktury algebraiczne różne od algebr Boole’a, są nierozstrzygalne. Dlatego zaskakującym jest, że studentka Alfreda Tarskiego, Wanda Szmielew, udowodniła (1955), że teoria pierwszego rzędu grup abelowych, w przeciwieństwie do nieabelowych, jest rozstrzygalna. Rozstrzygalność ta, wraz z podstawowym twierdzeniem skończonych grup przemiennych opisanych wyżej podkreślają pewne sukcesy teorii grup abelowych, jednakże nadal istnieje wiele obszarów w których prowadzi się badania:

    Évariste Galois (IPA: [evaˈʁist ɡalˈwa], ur. 25 października 1811 r. w Bourg-la-Reine k. Paryża, zm. 31 maja 1832 r. w Paryżu) – francuski matematyk o dużych zasługach dla rozwoju algebry, w szczególności zagadnienia rozwiązywalności równań wielomianowych.Element odwracalny – w algebrze dla danego (wewnętrznego) działania dwuargumentowego określonego w pewnej strukturze algebraicznej element, dla którego istnieje element do niego odwrotny względem tego działania.
  • wśród beztorsyjnych grupa abelowych skończonego rzędu, dobrze zrozumiane są tylko przypadki grup skończenie generowanych oraz rangi 1;
  • istnieje wiele nierozwiązalnych problemów w teorii beztorsyjnych grup abelowych nieskończonej rangi;
  • choć przeliczalne torsyjne grupy abelowe są dobrze rozumiane dzięki prostym przedstawieniom i niezmiennikom Ulma, to badania nad przeliczalnymi grupami mieszanymi są o wiele mniej zaawansowane;
  • o wielu łagodnych rozszerzeniach teorii pierwszego rzędu grup abelowych wiadomo jest, iż są nierozstrzygalne
  • Skończone grupy przemienne są przedmiotem badań obliczeniowej teorii grup.
  • Co więcej, grupy abelowe nieskończonego rzędu prowadzą, całkiem zaskakująco, do poważnych pytań dotyczących teorii mnogości, o której powszechnie uważa się, że jest podstawą całej matematyki. Przykładem może być problem Whiteheada: czy wszystkie grupy Whiteheada nieskończonego rzędu są także grupami abelowymi wolnymi? W latach siedemdziesiątych ubiegłego wieku Saharon Szelach udowodnił, że problem Whiteheada jest:

    Grupa torsyjna a. periodyczna – grupa, w której wszystkie jej elementy są skończonego rzędu. Wszystkie grupy skończone są torsyjne. Pojęcia periodyczności grupy nie należy mylić z jej cyklicznością, choć wszystkie skończone grupy cykliczne są periodyczne.Pierścień ideałów głównych (także pierścien główny) - w algebrze pierścień całkowity, którego każdy ideał jest ideałem głównym.
  • nierozstrzygalny w ZFC, tradycyjnej aksjomatycznej teorii zbiorów, z której wyprowadzona może być prawie cała współczesna matematyka
  • nierozstrzygalny również, jeżeli ZFC rozszerzy się przez przyjęcie uogólnionej hipotezy continuum jako aksjomat
  • rozstrzygalny, jeśli ZFC rozszerzy się o aksjomat konstruowalności.


  • Podstrony: [1] 2 [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Przestrzeń unormowana – przestrzeń liniowa, w której określono pojęcie normy będące bezpośrednim uogólnieniem pojęcia długości (modułu) wektora w przestrzeni euklidesowej.
    Grupa permutacji – grupa wszystkich bijekcji pewnego zbioru w siebie (czyli permutacji) z działaniem składania pełniącego rolę działania grupowego i identycznością jako elementem neutralnym. Elementem odwrotnym do danego jest funkcja (permutacja) odwrotna do danej, która zawsze istnieje z definicji bijekcji.
    Zbiór liczb rzeczywistych – uzupełnienie zbioru liczb wymiernych. Zbiór liczb rzeczywistych zawiera m.in. liczby naturalne, ujemne, całkowite, pierwiastki liczb dodatnich, wymierne, niewymierne, przestępne, itd. Z drugiej strony na liczby rzeczywiste można też patrzeć jak na szczególne przypadki liczb zespolonych.
    Grupa abelowa wolna – grupa abelowa będąca zarazem algebrą wolną. Grupa abelowa jest wolna wtedy i tylko wtedy, gdy ma podzbiór o tej własności, że każdy element grupy daje się jednoznacznie przedstawić jako kombinacja liniowa o współczynnikach całkowitych elementów tego zbioru. Podobnie jak w przypadku przestrzeni liniowych, zbiór taki nazywany jest bazą. Z punktu widzenia teorii modułów, grupy abelowe wolne są modułami wolnymi nad pierścieniem liczb całkowitych.
    Podgrupa normalna (niezmiennicza, dzielnik normalny) – rodzaj podgrupy umożliwiający badanie struktury grupy poprzez grupy ilorazowe, w których podgrupa ta jest utożsamiana z elementem neutralnym.
    Iloczyny (produkty) grup – w teorii grup są to sposoby budowania nowych grup z dobrze już znanych, jak również metody opisu bardziej skomplikowanych grup przez inne, mniejsze, o znanej strukturze, np. każda grupa abelowa skończenie generowana jest iloczynem prostym grup cyklicznych.
    Macierz – w matematyce układ liczb, symboli lub wyrażeń zapisanych w postaci prostokątnej tablicy. Choć słowo „macierz” oznacza najczęściej macierz dwuwskaźnikową, to możliwe jest rozpatrywanie macierzy wielowskaźnikowych (zob. notacja wielowskaźnikowa). Macierze jednowskaźnikowe nazywa się często wektorami wierszowymi lub kolumnowymi, co wynika z zastosowań macierzy w algebrze liniowej. W informatyce macierze modeluje się zwykle za pomocą (najczęściej dwuwymiarowych) tablic.

    Reklama

    Czas generowania strony: 0.07 sek.