• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Grupa prosta

    Przeczytaj także...
    Grupa rozwiązalna – w matematyce, jest to grupa, dla której istnieje ciąg subnormalny o abelowych faktorach (przemiennych ilorazach).Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.
    Rząd – w teorii grup pojęcie oddające intuicję „rozmiaru” (w sensie „rzędu wielkości”) danej grupy i ułatwiające przy tym opis jej podgrup; w szczególności rzędem elementu nazywa się rząd („rozmiar”) najmniejszej (pod)grupy zawierającej ten element.

    Grupa prostanietrywialna grupa niemająca właściwych podgrup normalnych, czyli jedynymi grupami normalnymi są w niej grupa trywialna i ona sama.

    Przykład[]

  • Grupa cykliczna Z3 jest prosta. Jeśli H jest podgrupą tej grupy, to jej rząd (liczba elementów) musi być dzielnikiem 3 (rzędu G). Ponieważ 3 jest liczbą pierwszą, jej jedynymi dzielnikami są 1 i 3, więc H jest albo trywialna albo równa G. Przykładem grupy która nie jest prosta jest Z12. Podgrupa składająca się z elementów 0, 4 i 8 jest podgrupą rzędu 3 i jest dzielnikiem normalnym Z12, ponieważ jest przemienna.
  • Podobnie grupa addytywna Z (wszystkich liczb calkowitych) nie jest prosta – zbiór liczb parzystych jest jej nietrywialną podgrupą normalną.
  • Analogiczne rozumowanie można zastosować do wszystkich grup przemiennych, i pokazać że jedynymi grupami przemiennymi, które są proste, są grupy cykliczne o liczbie elementów będącej liczbą pierwszą.
  • Grupy Mathieu.
  • Klasyfikacja[]

    Klasyfikacja nieprzemiennych grup prostych jest znacznie bardziej skomplikowana. Najmniejszą z takich grup jest grupa alternująca A5 i można pokazać że każda grupa prosta rzędu 60 jest z nią izomorficzna.

    Klasyfikacja skończonych grup prostych jest olbrzymim twierdzeniem z teorii grup, składającym się z ponad 500 artykułów zawierających w sumie ponad 10 000 stron, napisanych przez ponad 100 autorów. W większości artykuły te powstały pomiędzy 1955 a 1983 rokiem. Twierdzenie to klasyfikuje wszystkie istniejące skończone grupy proste.Grupa trywialna – w teorii grup grupa składająca się wyłącznie z jednego elementu; tego rodzaju grupy są najmniejszymi w sensie liczebności (tj. rzędu) możliwymi grupami.

    Grupy proste stanowią "klocki" z których zbudowane są wszystkie grupy skończone, w podobnym znaczeniu jak liczby pierwsze stanowią klocki z których zbudowane są wszystkie liczby naturalne. Klasyfikacja skończonych grup prostych, zakończona w 1982 roku, jest jednym z największych dotychczas zrealizowanych projektów w matematyce.

    Izomorfizm (gr. isos – równy, morphe – kształt) − funkcja wzajemnie jednoznaczna z jednego obiektu matematycznego w drugi, która zachowuje funkcje, relacje i wyróżnione elementy.Liczba pierwsza – liczba naturalna większa od 1, która ma dokładnie dwa dzielniki naturalne: jedynkę i siebie samą, np.

    Twierdzenie Feita–Thompsona mówi, że każda grupa nieparzystego rzędu jest rozwiązalna. Wynika z tego że każda skończona grupa prosta jest grupą cykliczną o rzędzie pierwszym albo ma rząd parzysty.

    Istnieją różne nieskończone grupy proste: przykładami takich grup są proste grupy Liego i grupy Thompsona T i V.

    Zobacz też[]

  • grupa elementarna
  • Podgrupa normalna (niezmiennicza, dzielnik normalny) – rodzaj podgrupy umożliwiający badanie struktury grupy poprzez grupy ilorazowe, w których podgrupa ta jest utożsamiana z elementem neutralnym.Grupa cykliczna – grupa, której wszystkie elementy można wyrazić za pomocą potęg pewnego jej elementu. Równoważnie jest to grupa generowana przez jeden z jej elementów (elementów które generują tę grupę może być wiele).



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Grupa przemienna (abelowa) – grupa, w której działanie jest przemienne. Zwyczajowo, w przypadku grup przemiennych stosuje się zapis addytywny.
    Podgrupa – w teorii grup zbiór elementów danej grupy, który sam tworzy grupę z działaniem grupy wyjściowej; inaczej podzbiór grupy zamknięty na działanie grupowe i branie odwrotności, który zawiera jej element neutralny (zob. działanie wewnętrzne).

    Reklama

    Czas generowania strony: 0.176 sek.