• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Grupa permutacji



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Grupa rozwiązalna – w matematyce, jest to grupa, dla której istnieje ciąg subnormalny o abelowych faktorach (przemiennych ilorazach).Teoria grup – dział algebry, uważany za dość autonomiczną dziedzinę matematyki (w szczególności teoria grup abelowych, czyli przemiennych), który bada własności struktur algebraicznych nazywanych grupami, czyli zbiorów z wyróżnionym łącznym dwuargumentowym działaniem wewnętrznym mającym element neutralny i w którym każdy element jest odwracalny.

    Grupa permutacjigrupa wszystkich permutacji ustalonego zbioru skończonego z działaniem składania pełniącym rolę działania grupowego (i tożsamością jako elementem neutralnym; element odwrotny dany jest jako permutacja odwrotna). Liczba elementów (tj. rząd) grupy permutacji zbioru -elementowego wynosi (zob. silnia).

    Jerzy Browkin (ur. 5 listopada 1934, zm. 23 listopada 2015 w Warszawie) – polski matematyk zajmujący się algebraiczną teorią liczb. W 1994, wspólnie z Juliuszem Brzezińskim, sformułował n-hipotezę, tj. uogólnienie hipotezy abc na liczby całkowite n ≥ 3.Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.

    Grupy permutacji były punktem wyjścia teorii grup: zaczęto je badać w związku z poszukiwaniem ogólnych rozwiązań równań algebraicznych. Grupy symetryczne o więcej niż dwóch elementach nie są przemienne (abelowe), a o więcej niż czterech elementach nie są rozwiązalne: zgodnie z teorią Galois jest to powód, dla którego równania algebraiczne stopnia większego niż cztery nie mają rozwiązań ogólnych (tzw. twierdzenie Abela–Ruffiniego).

    Rząd – w teorii grup pojęcie oddające intuicję „rozmiaru” (w sensie „rzędu wielkości”) danej grupy i ułatwiające przy tym opis jej podgrup; w szczególności rzędem elementu nazywa się rząd („rozmiar”) najmniejszej (pod)grupy zawierającej ten element.Silnią liczby naturalnej n (w notacji matematycznej: n!, co czytamy „n silnia”) nazywamy iloczyn wszystkich liczb naturalnych nie większych niż n. Oznaczenie n! wprowadził w 1808 roku Christian Kramp.

    Ogólnie każdą grupę można rozumieć jako grupę permutacji elementów zbioru, na którym została określona (tzw. twierdzenie Cayleya): w związku z tym wszystkie wyniki dotyczące grup permutacji dotyczą również dowolnych grup skończonych.

    Podstrony: 1 [2] [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Permutacja – wzajemnie jednoznaczne przekształcenie pewnego zbioru na siebie. Najczęściej termin ten oznacza funkcję na zbiorach skończonych.
    Twierdzenie Cayleya – twierdzenie teorii grup autorstwa Arthura Cayleya mówiące, iż dowolna abstrakcyjna grupa jest w rzeczywistości pewną grupą przekształceń (podgrupą grupy symetrycznej) zbioru, na którym została ona określona. Pozwala ono przełożyć wszystkie wyniki dotyczące grup symetrycznych na grupy abstrakcyjne.
    Twierdzenie Abela-Ruffiniego – głosi, że pierwiastki równania algebraicznego stopnia wyższego niż 4 nie dają się wyrazić w ogólnej postaci za pomocą czterech działań algebraicznych i pierwiastkowania poprzez współczynniki równania w skończonej liczbie kroków (czyli poprzez tak zwane pierwiastniki).
    Zbiór skończony − zbiór o skończonej liczbie elementów. Nieujemną liczbę naturalną określającą ilość elementów zbioru skończonego nazywa się mocą zbioru. Zbiór skończony ma moc skończoną. Najmniejszym zbiorem skończonym jest zbiór pusty  Ø.
    Równanie algebraiczne – równanie w postaci W(x) = 0, gdzie W(x) jest wielomianem stopnia n jednej lub wielu zmiennych (n ≥ 0). Więc równanie algebraiczne jednej zmiennej to równanie w postaci
    Funkcja tożsamościowa a. identycznościowa – w matematyce funkcja danego zbioru w siebie, która każdemu argumentowi przypisuje jego samego; intuicyjnie funkcja, która „nic nie zmienia”.
    Funkcja odwrotna – funkcja przyporządkowująca wartościom jakiejś funkcji jej odpowiednie argumenty, czyli działająca odwrotnie do niej.

    Reklama

    Czas generowania strony: 0.02 sek.