• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Grupa cykliczna

    Przeczytaj także...
    Grupa diedralna a. dwuścianu – w teorii grup, dziale algebry, grupa przekształceń, mianowicie izometrii płaszczyznowych, wielokąta foremnego przekształcająca go na siebie (tzw. „izometrii własnych”) albo ogólniej: dowolna grupa o strukturze identycznej ze strukturą grupy symetrii tego wielokąta (tzn. z nią izomorficzną); zarazem jest to grupa izometrii parzystych (tzn. zachowujących orientację) dwuścianu foremnego w trójwymiarowej przestrzeni euklidesowej: symetriom wielokąta odpowiadają obroty przestrzeni trójwymiarowej.Arytmetyka modularna, arytmetyka reszt – w matematyce system liczb całkowitych, w którym liczby „zawijają się” po osiągnięciu pewnej wartości nazywanej modułem, często określanej terminem modulo (skracane mod). Pierwszy pełny wykład arytmetyki reszt przedstawił Carl Friedrich Gauss w Disquisitiones Arithmeticae („Badania arytmetyczne”, 1801).
    Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.
    Pierwiastki szóstego stopnia z jedynki tworzą grupę cykliczną z mnożeniem, gdzie z jest generatorem grupy.

    Grupa cykliczna – grupa generowana przez jeden element nazywany jej generatorem (grupa może mieć więcej niż jeden generator). Dowolny element tej grupy można uzyskać przez iterowanie (wielokrotne złożenie) działania grupowego na generatorze lub jego odwrotności; w notacji multiplikatywnej elementy są więc potęgami generatora, a w notacji addytywnej jego wielokrotnościami.

    Rząd – w teorii grup pojęcie oddające intuicję „rozmiaru” (w sensie „rzędu wielkości”) danej grupy i ułatwiające przy tym opis jej podgrup; w szczególności rzędem elementu nazywa się rząd („rozmiar”) najmniejszej (pod)grupy zawierającej ten element.Liczby całkowite – liczby naturalne dodatnie N + = { 1 , 2 , 3 , … } {displaystyle mathbb {N} _{+}={1,2,3,dots }} oraz liczby przeciwne do nich { − 1 , − 2 , − 3 , … } {displaystyle {-1,-2,-3,dots }} , a także liczba zero. Uogólnieniem liczb całkowitych są liczby wymierne i tym samym liczby rzeczywiste, szczególnym przypadkiem liczb całkowitych są: liczby naturalne.

    W szczególności dowolną grupę cykliczną można przedstawić jako

    gdzie jest generatorem grupy W szczególności może się zdarzyć, iż będzie dla pewnego równe elementowi neutralnemu – w tym wypadku grupa zawiera skończenie wiele elementów; jeżeli taka sytuacja nie zachodzi, to grupa ma nieskończenie wiele (dokładnie: przeliczalnie wiele) elementów. Najmniejszą grupą cykliczną jest grupa trywialna zawierająca tylko jeden element; najmniejszą grupą niecykliczną jest grupa symetryczna (lub grupa diedralna o tej samej strukturze) rzędu

    Grupa trywialna – w teorii grup grupa składająca się wyłącznie z jednego elementu; tego rodzaju grupy są najmniejszymi w sensie liczebności (tj. rzędu) możliwymi grupami.Element odwracalny – w algebrze dla danego (wewnętrznego) działania dwuargumentowego określonego w pewnej strukturze algebraicznej element, dla którego istnieje element do niego odwrotny względem tego działania.

    Grupy cykliczne należą do najprostszych i najlepiej poznanych grup: skończone i nieskończone grupy cykliczne mają tę samą strukturę co (odpowiednio) grupy addytywne dla (zob. arytmetyka modularna) oraz (zob. liczby całkowite). W szczególności są one „tworzywem” niektórych rodzajów grup przemiennych, zob. klasyfikacje grup przemiennych o skończonej liczbie elementów oraz grup przemiennych o skończonej liczbie generatorów.

    Izomorfizm (gr. isos – równy, morphe – kształt) − funkcja wzajemnie jednoznaczna z jednego obiektu matematycznego w drugi, która zachowuje funkcje, relacje i wyróżnione elementy.Grupa permutacji – grupa wszystkich bijekcji pewnego zbioru w siebie (czyli permutacji) z działaniem składania pełniącego rolę działania grupowego i identycznością jako elementem neutralnym. Elementem odwrotnym do danego jest funkcja (permutacja) odwrotna do danej, która zawsze istnieje z definicji bijekcji.

    Grupa multiplikatywna dowolnego ciała skończonego (tj. zbiór elementów odwracalnych, czyli niezerowych, z mnożeniem) jest grupą cykliczną.

    Linki zewnętrzne[]

  • Milne, Group theory, http://www.jmilne.org/math/CourseNotes/gt.html
  • An introduction to cyclic groups
  • Przypisy

    1. Hazewinkel, Michiel, ed. (2001), "Cyclic group", Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Zbiór przeliczalny – intuicyjnie, zbiór którego elementy można ustawić w ciąg (skończony bądź nie), tzn. "wypisać je po kolei", "ponumerować". Istnieją dwie nierównoważne konwencje użycia terminu zbiór przeliczalny w matematyce:
    Jeśli n jest dowolną liczbą naturalną różną od 0, to pierwiastkiem z jedynki n-tego stopnia nazywa się dowolną liczbę zespoloną z spełniającą równość:
    Zbiór generatorów grupy – w teorii grup podzbiór, który nie zawiera się w żadnej podgrupie właściwej danej grupy. Równoważnie zbiór generatorów grupy to podzbiór grupy, którego każdy element można przedstawić jako kombinację (względem operacji grupowej) skończenie wielu elementów tego podzbioru i ich elementów odwrotnych (w notacji addytywnej odpowiada to kombinacji liniowej).
    Element neutralny – w algebrze element struktury algebraicznej, który dla danego działania dwuargumentowego przyłożony do dowolnego elementu nie zmieni go.

    Reklama

    Czas generowania strony: 0.023 sek.