• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Grupa - matematyka



    Podstrony: [1] 2 [3] [4] [5] [6]
    Przeczytaj także...
    Zbiory rozłączne – dwa zbiory, których część wspólna jest zbiorem pustym. Inaczej mówiąc, zbiory nie mające wspólnego elementu.Przestrzeń euklidesowa – przestrzeń o geometrii euklidesowej. Jest ona naturalnym elementem modeli świata rzeczywistego (łac. geometria = mierzenie ziemi) i stanowi dobre przybliżenie przestrzeni fizycznych w warunkach makroskopowych, jednak nie nadaje się do opisu rzeczywistości w bardzo małych, atomowych, lub bardzo wielkich, astronomicznych, wielkościach. Jednowymiarowa przestrzeń euklidesowa nazywana jest prostą euklidesową, zaś dwuwymiarowa – płaszczyzną euklidesową. Przestrzenie te nazywa się również przestrzeniami afinicznymi euklidesowymi w odróżnieniu od przestrzeni liniowych euklidesowych, znanych szerzej jako przestrzenie unitarne.
    Charakteryzacje[ | edytuj kod]

    Wprost z definicji można wywieść kilka trywialnych, choć ważnych obserwacji. Warunek łączności oznacza, że kolejność obliczania (nawiasowanie elementów) nie ma wpływu na ostateczny wynik; dzięki napis postaci ma sens i może jednoznacznie wskazywać element . Postulat istnienia elementu neutralnego oznacza, że nośnik grupy nie może być zbiorem pustym.

    Moc zbioru – własność zbioru, która opisuje jego liczebność. Nieformalnie, moc zbioru jest tym większa im większy jest zbiór. Pojęcie mocy zbioru opiera się na pojęciu równoliczności dwóch zbiorów – zbiory A i B są równoliczne, gdy każdy element zbioru A można połączyć w parę z dokładnie jednym elementem zbioru B, innymi słowy istnieje bijekcja (funkcja różnowartościowa i "na") między zbiorami A i B. Zbiory równoliczne mają tę samą moc. Moce zbiorów są konkretnymi obiektami matematycznymi, nazywanymi liczbami kardynalnymi.Grupa diedralna a. dwuścianu – w teorii grup, dziale algebry, grupa przekształceń, mianowicie izometrii płaszczyznowych, wielokąta foremnego przekształcająca go na siebie (tzw. „izometrii własnych”) albo ogólniej: dowolna grupa o strukturze identycznej ze strukturą grupy symetrii tego wielokąta (tzn. z nią izomorficzną); zarazem jest to grupa izometrii parzystych (tzn. zachowujących orientację) dwuścianu foremnego w trójwymiarowej przestrzeni euklidesowej: symetriom wielokąta odpowiadają obroty przestrzeni trójwymiarowej.

    W definicji nie zapewnia się nic ponad istnienie (co najmniej jednego) prawostronnego elementu neutralnego, który służy zagwarantowaniu istnienia (co najmniej jednego) prawostronnego elementu odwrotnego do danego. Mimo to wynika z niej, że grupa ma jeden i tylko jeden prawostronny element neutralny, który równocześnie jest jednoznacznie wyznaczonym lewostronnym elementem neutralnym; w związku z tym mówi się po prostu o elemencie neutralnym grupy. Podobnie dowolny ma jednoznacznie wyznaczony prawostronny element odwrotny, który jest jednoznacznie wyznaczonym lewostronnym elementem odwrotnym do dlatego nazywa się go elementem odwrotnym do i wprowadza dla niego oznaczenie

    Przestrzeń topologiczna – podstawowe pojęcie topologii; zbiór wyposażony w strukturę (tzw. topologię) wyróżniającą pewną rodzinę jego podzbiorów (tzw. zbiory otwarte), co umożliwia określenie czy dany punkt leży „blisko”, czy „daleko” od danego podzbioru (w jego domknięciu lub poza nim) mimo braku pojęcia odległości (metryki).Arytmetyka modularna, arytmetyka reszt – w matematyce system liczb całkowitych, w którym liczby „zawijają się” po osiągnięciu pewnej wartości nazywanej modułem, często określanej terminem modulo (skracane mod). Pierwszy pełny wykład arytmetyki reszt przedstawił Carl Friedrich Gauss w Disquisitiones Arithmeticae („Badania arytmetyczne”, 1801).

    W świetle tych obserwacji przyjmuje się często definicje:

  • Element neutralny*: istnieje jednoznacznie wyznaczony element w zbiorze spełniający dla dowolnego elementu z tego zbioru warunek
  • Odwracalność*: dla każdego musi istnieć jednoznacznie wyznaczony dla których
  • Ich przyjęcie zwalnia z dowodzenia wyżej przedstawionych własności, jednak podejście to wymaga sprawdzenia dużo większej liczby warunków zawartych w definicji; uzasadnia to też definiowanie grupy jako uporządkowanej czwórki której trzeci element oznacza (jednoargumentowe) działanie odwracania, a czwarty – (wyróżniony) element neutralny.

    Liczba pierwsza – liczba naturalna większa od 1, która ma dokładnie dwa dzielniki naturalne: jedynkę i siebie samą, np.Nauki przyrodnicze (w terminologii angielskiej zwane natural sciences) to mało precyzyjne określenie dziedzin nauki, które zajmują się badaniem różnych aspektów świata materialnego, ożywionego i nieożywionego, zazwyczaj z zastosowaniem aparatu matematycznego, jak również właściwej sobie metodologii.

    W definicji można zastąpić istnienie prawostronnych elementów neutralnych i odwrotnych na lewostronne, nie zmieniając jej sensu; okazuje się jednak, że zmiana musi dotyczyć obu rodzajów elementów jednocześnie: istnienie prawostronnego elementu neutralnego i lewostronnych elementów odwrotnych nie zawsze zapewnia istnienie struktury grupy w zbiorze (por. Przykłady), podobnie dotyczy to lewostronnego elementu neutralnego i prawostronnych elementów odwrotnych.

    Grupa rozwiązalna – w matematyce, jest to grupa, dla której istnieje ciąg subnormalny o abelowych faktorach (przemiennych ilorazach).Warstwa – w teorii grup podzbiór danej grupy będący jednym z równolicznych elementów jej podziału wyznaczonego przez ustaloną podgrupę, czyli klasa równoważności pewnej relacji równoważności związanej ze wspomnianą podgrupą; jako klasy ustalonej równoważności są one rozłączne, niepuste, a ich zbiór sumuje się do całej grupy.

    Przytoczona definicja nie jest jedyną, która wprowadza w zbiorze strukturę grupy. Poza istnieniem łącznego działania dwuargumentowego można założyć dla każdego istnienie elementu spełniającego warunek dla dowolnych ; inną możliwością jest wprowadzenie obok działania dwóch innych działań dwuargumentowych: oraz , które dla dowolnych spełniają .

    Zbiór formuł zdaniowych T danego języka pierwszego rzędu nazywamy teorią pierwszego rzędu (lub systemem dedukcyjnym) wtw T spełnia następujący warunek:Łączność – jedna z własności działań dwuargumentowych, czyli np. operatorów arytmetycznych. Pojęcie to występuje w dwóch znaczeniach.

    Grupę spełniającą piąty aksjomat:

  • Przemienność: dla dowolnych elementów zbioru spełniona jest równość
  • nazywa się grupą przemienną (lub abelową); powyższy warunek dotyczy, ściśle rzecz ujmując, działania dwuargumentowego określonego na które nazywa się przemiennym – grupa przemienna jest więc grupą z działaniem przemiennym. Warunek przemienności jest na tyle silny, iż umożliwił rozwój teorii grup przemiennych w oderwaniu od ogólnej teorii grup jako dość samodzielnego działu matematyki.

    Teoria grup – dział algebry, uważany za dość autonomiczną dziedzinę matematyki (w szczególności teoria grup abelowych, czyli przemiennych), który bada własności struktur algebraicznych nazywanych grupami, czyli zbiorów z wyróżnionym łącznym dwuargumentowym działaniem wewnętrznym mającym element neutralny i w którym każdy element jest odwracalny.Grupa Galois – grupa związana z określonym rodzajem rozszerzenia ciała. Badanie rozszerzeń ciał (i wielomianów je produkujących) za pomocą grup Galois nazywa się teorią Galois, której nazwa pochodzi od nazwiska Évariste’a Galois, który pierwszy zastosował wspomnianą metodę.

    Konwencje zapisu[ | edytuj kod]

     Zapoznaj się również z: grupa multiplikatywnagrupa addytywna.

    Badanie grupy polega na dociekaniu, w jaki sposób zależy od elementów oraz nie zaś od nazwy, czy znaku samego działania. Mając to na uwadze, przyjęło się pomijać znak działania, zastępując go zestawieniem: zamiast pisze się (czasami ). Samo działanie nazywa się mnożeniem, rozumianym w związku z tym w szerokim sensie. Może ono oznaczać mnożenie liczb, ale też złożenie odwzorowań, branie różnic symetrycznych zbiorów, czy też jakąkolwiek inną bardziej wymyślną definicję (por. Przykłady). Mówi się wtedy, że w grupie używa się zapisu multiplikatywnego bądź że jest ona grupą multiplikatywną. Dlatego też, mówi się też o iloczynie elementów oraz Ponadto element neutralny oznacza się często cyfrą przy czym nie musi to być liczba 1: może to być odwzorowanie tożsamościowe, zbiór pusty, czy obiekt innego rodzaju. Nie stosuje się jednak zapisu zamiast dla elementu odwrotnego do Opisany sposób zapisu będzie wykorzystywany w dalszej części artykułu (zachowane zostanie oznaczenie dla elementu neutralnego).

    Parafraza – swobodna przeróbka tekstu lub tłumaczenia, która rozwija lub modyfikuje treść oryginału, zachowując jednak jego zasadniczy sens. Przeciwieństwo metafrazy – literalnego przekazu słowo w słowo. Parafraza jest czytelna tylko wtedy, gdy odwołuje się do dzieła powszechnie znanego.Leopold Kronecker (ur. 7 grudnia 1823 w Legnicy, zm. 29 grudnia 1891 w Berlinie) – niemiecki matematyk i logik. Brat Hugona Kroneckera.

    Obok zapisu multiplikatywnego stosuje się również zapis addytywny, w szczególności, gdy grupa jest przemienna. Działanie oznacza się w nim znakiem „+” i nazywa dodawaniem, rozumianym – podobnie jak mnożenie – w szerokim sensie. Element nazywa się sumą elementów oraz W grupie addytywnej element neutralny oznacza się cyfrą przy czym znowu nie musi on oznaczać liczby 0. Ponadto element odwrotny do zapisuje się i nazywa elementem przeciwnym do

    Rząd – w teorii grup pojęcie oddające intuicję „rozmiaru” (w sensie „rzędu wielkości”) danej grupy i ułatwiające przy tym opis jej podgrup; w szczególności rzędem elementu nazywa się rząd („rozmiar”) najmniejszej (pod)grupy zawierającej ten element.Fizyka teoretyczna – sposób uprawiania fizyki polegający na matematycznym opisie praw przyrody, tworzeniu i rozwijaniu teorii, z których wnioski mogą być sprawdzone doświadczalnie. Przykładem jest fizyka matematyczna opisująca zjawiska i teorie fizyczne korzystając z rozwiniętej aksjomatyki matematycznej i obiektów zdefiniowanych w podobny sposób, jak np. rozmaitości.

    Zwyczajowo grupą nazywa się nie parę grupa–działanie, a sam nośnik – zbiór – o ile nie prowadzi to do niejasności: jak wspomniano wcześniej, na zbiorze można często określić wiele grup; w takim przypadku sformułowania „grupa addytywna” i „grupa multiplikatywna” służą wyróżnieniu jednej z nich.

    Rozstrzygalność (decydowalność) problemu matematycznego to następująca jego właściwość: istnieje algorytm, który oblicza odpowiedź na dowolne pytanie stawiane przez problem.Wielokąt foremny – wielokąt, który ma wszystkie kąty wewnętrzne równe i wszystkie boki równej długości. Wszystkie wielokąty foremne są figurami wypukłymi. Wielokątem foremnym o najmniejszej możliwej liczbie boków (3) jest trójkąt równoboczny. Teoretycznie jest możliwy do skonstruowania dwukąt foremny, ale jest to przypadek zdegenerowany, wyglądałby on jak zwykły odcinek, a kąt między bokami wynosiłby 0 ∘   {displaystyle 0^{circ } } . Czworokąt foremny to inaczej kwadrat.

    Własności[ | edytuj kod]

    Niech będzie grupą i Wówczas:

  • istnieje jeden i tylko jeden dla którego oraz jeden i tylko jeden dla którego ;
  • obowiązują prawa skracania: jeżeli to (skracanie lewostronne) oraz: jeżeli to (skracanie prawostronne);
  • zachodzi oraz .
  • W definicji grupy określa się iloczyn dwóch elementów; wcześniej wprowadzony został jednoznaczny iloczyn trzech elementów; podobnie można wprowadzić iloczyn czterech elementów. W celu uproszczenia notacji w podobny sposób wprowadza się ogólny iloczyn elementów grupy definiowany poprzez -krotny iloczyn dwóch elementów; nawiasy można wstawić na wiele sposobów, jednak dzięki łączności wszystkie one dają ten sam wynik: równy Jeśli są wszystkie równe to pisze się w szczególności a przy tym Tę obserwację można wyrazić więc w postaci (dla i ); ponadto .

    Grupa prosta – nietrywialna grupa nie mająca właściwych podgrup normalnych, czyli jedynymi grupami normalnymi są w niej grupa trywialna i ona sama.Mnożenie macierzy – w matematyce operacja mnożenia macierzy przez skalar lub inną macierz. Artykuł zawiera opis różnorodnych sposobów przeprowadzania ich mnożenia.

    Własności te rozszerza się na wykładniki całkowite; przyjmuje się, że (element neutralny) oraz (element odwrotny do ) dla oraz Ze względu na to, dla wszystkich oraz

    Podział, rozbicie, partycja zbioru – w matematyce rodzina niepustych, rozłącznych podzbiorów danego zbioru dająca w sumie cały zbiór.Matematyka stosowana - gałąź matematyki zajmująca się przede wszystkim technikami i ich stosowaniem w innych dziedzinach. Interakcja między zastosowaniami matematyki a rozwojem matematyki czystej powoduje, iż obszar matematyki stosowanej nie jest precyzyjnie zdefiniowany. Zalicza się do niej działania rozwijające aparat matematyczny na potrzeby innych nauk, w szczególności medycyny, biologii, informatyki i techniki. Można wyróżnić w niej działy takie jak:
  • zachodzi równość ,
  • prawdą jest ,
  • obowiązuje tożsamość .
  • Dodatkowo dla zachodzi ; obserwacja ta dowodzi też Jeżeli są elementami, dla których to , a stąd dla wszystkich . Jeśli dla dowolnego to grupa jest przemienna.

    Otwarty dostęp (OD, ang. Open Access, „OA”) – oznacza wolny, powszechny, trwały i natychmiastowy dostęp dla każdego do cyfrowych form zapisu danych i treści naukowych oraz edukacyjnych.Liczby całkowite – liczby naturalne dodatnie N + = { 1 , 2 , 3 , … } {displaystyle mathbb {N} _{+}={1,2,3,dots }} oraz liczby przeciwne do nich { − 1 , − 2 , − 3 , … } {displaystyle {-1,-2,-3,dots }} , a także liczba zero. Uogólnieniem liczb całkowitych są liczby wymierne i tym samym liczby rzeczywiste, szczególnym przypadkiem liczb całkowitych są: liczby naturalne.

    W przypadku grup addytywnych zamiast pisze się dla i definiuje oraz dla Określa to dla oraz Poprzednie obserwacje zapisuje się wtedy odpowiednio: oraz ponadto ( w ostatniej tożsamości istotne jest założenie przemienności grupy).

    Relacja równoważności – zwrotna, symetryczna i przechodnia relacja dwuargumentowa określona na pewnym zbiorze utożsamiająca ze sobą w pewien sposób jego elementy, co ustanawia podział tego zbioru na rozłączne podzbiory według tej relacji. Podobnie każdy podział zbioru niesie ze sobą informację o pewnej relacji równoważności.W matematyce, grupa Liego to grupa, która jest zarazem gładką rozmaitością. Można na nią patrzeć jako na zbiór z dodatkowymi strukturami rozmaitości i grupy. Przykładem grupy Liego jest grupa obrotów przestrzeni trójwymiarowej. Grupy Liego są często spotykane w analizie matematycznej, fizyce i geometrii. Zostały po raz pierwszy wprowadzone przez Sophusa Liego w 1870 roku do badania równań różniczkowych.


    Podstrony: [1] 2 [3] [4] [5] [6]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Silnią liczby naturalnej n (w notacji matematycznej: n!, co czytamy „n silnia”) nazywamy iloczyn wszystkich liczb naturalnych nie większych niż n. Oznaczenie n! wprowadził w 1808 roku Christian Kramp.
    Izometria (gr. isos – równy, métron – miara; także przekształcenie izometryczne, izomorfizm izometryczny) – funkcja zachowująca odległości między punktami przestrzeni metrycznej. W geometrii figury między którymi istnieje izometria (są izometryczne) nazywne są przystającymi.
    Ranga grupy abelowej – w algebrze, uogólnienie pojęcia rangi grupy abelowej wolnej na dowolne grupy abelowe; można ją postrzegać jako najmniejszą liczbę elementów generujących daną grupę abelową. Ranga grupy abelowej wyznacza rozmiar największej grupy abelowej wolnej zawartej w tej grupie. Jeżeli grupa jest beztorsyjna, to rangę można traktować analogicznie do wymiaru przestrzeni liniowej: jest to w istocie wymiar najmniejszej przestrzeni liniowej nad ciałem liczb wymiernych, w której można zanurzyć daną grupę abelową.
    Reprezentacja grupy – w teorii grup każdy homomorfizm grupy w grupę przekształceń liniowych odwracalnych ustalonej przestrzeni liniowej nad zadanym ciałem.
    Struktura matematyczna (także model, system semantyczny, model semantyczny, dziedzina, struktura pierwszego rzędu) - w matematyce zbiór obiektów matematycznych połączonych w pewien system.
    Działania arytmetyczne – zwyczajowa nazwa czterech spośród działań algebraicznych: dodawania, odejmowania, mnożenia i dzielenia.
    Działanie lub operacja – w matematyce i logice przyporządkowanie jednemu lub większej liczbie elementów nazywanych argumentami lub operandami elementu nazywanego wynikiem. Badaniem działań w ogólności zajmuje się dział nazywany algebrą uniwersalną, zbiory z choć jednym określonym na nim działaniem algebraicznym nazywa się algebrami ogólnymi (często krótko: algebrami), samą rodzinę działań określa się nazwą „sygnatura”.

    Reklama

    Czas generowania strony: 0.163 sek.