• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Granica - matematyka

    Przeczytaj także...
    Przestrzeń topologiczna – podstawowe pojęcie topologii; zbiór wyposażony w strukturę (tzw. topologię) wyróżniającą pewną rodzinę jego podzbiorów (tzw. zbiory otwarte), co umożliwia określenie czy dany punkt leży „blisko”, czy „daleko” od danego podzbioru (w jego domknięciu lub poza nim) mimo braku pojęcia odległości (metryki).Ciąg – w matematyce pojęcie oddające intuicję ponumerowania, czy też uporządkowania elementów zbioru. W zależności od rodzaju elementów zbioru stosuje się różne nazwy: w przypadku liczb mówi się o ciągach liczbowych, bądź bardziej precyzyjnie, np. w przypadku zbioru liczb całkowitych, rzeczywistych czy zespolonych, ciąg nazywa się wtedy odpowiednio ciągiem całkowitoliczbowym, rzeczywistym i zespolonym. Jeśli elementami zbioru są funkcje, to ciąg nazywa się ciągiem funkcyjnym. Ciąg powstały poprzez wybranie elementów innego ciągu nazywa się podciągiem.
    Granica funkcji – wartość, do której obrazy danej funkcji zbliżają się nieograniczenie dla argumentów dostatecznie bliskich wybranemu punktowi. Funkcjonują dwie równoważne definicje podane przez Augustina Louisa Cauchy’ego oraz Heinricha Eduarda Heinego.

    Granica – pojęcie używane w matematyce określające zachowania funkcji, a w szczególności ciągu, gdy ich argumenty „zbliżają się” do pewnej wartości lub nieskończoności. Granice używane są w rachunku różniczkowo-całkowym i innych działach analizy matematyczej do definiowania pochodnych i ciągłości.

    Funkcja ciągła – funkcja o następującej intuicyjnej własności: „mała” zmiana argumentu niesie ze sobą „małą” zmianę wartości; lub też: wartości funkcji dla „bliskich” sobie argumentów również będą sobie „bliskie”.Rachunek różniczkowy i całkowy – dział matematyki zajmujący się badaniem funkcji zmiennej rzeczywistej lub zespolonej w oparciu o podstawowe dla tej dyscypliny matematycznej pojęcia pochodnych i całek.

    Pojęcia te stosuje się głównie przy określaniu granic ciągów (zob. granica ciągu) i funkcji (zob. granica funkcji); jednak można te definicje połączyć i uogólnić na dowolne przestrzenie topologiczne, używając ciągów uogólnionych lub filtrów.

    Granica zwykle zapisywana jest jako i jest odczytywana jako „granica od gdy zbliża się do równa ”. Fakt, że funkcja zbliża się do granicy gdy zbliża się do jest czasami oznaczany strzałką w prawo jak w

    Funkcja (łac. functio, -onis, „odbywanie, wykonywanie, czynność”) – dla danych dwóch zbiorów X i Y przyporządkowanie każdemu elementowi zbioru X dokładnie jednego elementu zbioru Y. Oznacza się ją na ogół f, g, h itd.Granica ciągu – wartość, w której dowolnym otoczeniu znajdują się prawie wszystkie (tzn. wszystkie poza skończenie wieloma) wyrazy danego ciągu; precyzyjniej: wartość, dowolnie blisko której leżą wszystkie wyrazy ciągu o dostatecznie dużych wskaźnikach.

    Zobacz też[ | edytuj kod]

  • granica ciągu
  • granica funkcji



  • w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Matematyka (z łac. mathematicus, od gr. μαθηματικός mathēmatikós, od μαθηματ-, μαθημα mathēmat-, mathēma, „nauka, lekcja, poznanie”, od μανθάνειν manthánein, „uczyć się, dowiedzieć”; prawd. spokr. z goc. mundon, „baczyć, uważać”) – nauka dostarczająca narzędzi do otrzymywania ścisłych wniosków z przyjętych założeń, zatem dotycząca prawidłowości rozumowania. Ponieważ ścisłe założenia mogą dotyczyć najróżniejszych dziedzin myśli ludzkiej, a muszą być czynione w naukach ścisłych, technice a nawet w naukach humanistycznych, zakres matematyki jest szeroki i stale się powiększa.
    Ciąg uogólniony - w teorii mnogości, rozszerzenie pojęcia ciągu na odwzorowania zbiorów skierowanych w dowolne zbiory. Dla ciągów uogólnionych możemy wprowadzać pojęcie zbieżności czy punktów skupienia. W szczególności, każdy ciąg jest ciągiem uogólnionym.

    Reklama

    Czas generowania strony: 0.013 sek.