• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Geometria konforemna

    Przeczytaj także...
    Odwzorowanie równokątne, wiernokątne lub konforemne – w matematyce funkcja zachowująca kąty. Zwykle jest to funkcja między obszarami płaszczyzny zespolonej.Rozmaitość bądź przestrzeń pseudoriemannowska – uogólnienie rozmaitości riemannowskiej, od której różni się ona tym, iż w rozmaitości pseudoriemannowskiej tensor metryczny nie musi być dodatnio określony, a tylko niezdegenerowany. Nazwa pojęcia pochodzi od nazwiska Bernharda Riemanna.
    Rozmaitość riemannowska bądź przestrzeń Riemanna - nazwana od nazwiska Bernharda Riemanna rzeczywista rozmaitość różniczkowa (M, g), dla której zdefiniowany jest tensor metryczny g, oraz istnieje funkcja d(x,y) określająca najkrótszą możliwą odległość jako rzeczywistą nieujemną wartość, będąca kresem dolnym zbioru odległości po wszystkich krzywych przechodzących jednocześnie przez dwa zadane punkty x i y.

    Geometria konforemna – dział badający odwzorowania równokątne (zachowujące kąt, konforemne) określone na rozmaitościach riemmanowskich lub rozmaitościach pseudoriemannowskich. W szczególności geometria konforemna w dwóch (rzeczywistych) wymiarach jest geometrią płaszczyzn riemannowskich. (window.RLQ=window.RLQ||).push(function(){mw.log.warn("Gadget \"edit-summary-warning\" styles loaded twice. Migrate to type=general. See \u003Chttps://phabricator.wikimedia.org/T42284\u003E.");mw.log.warn("Gadget \"wikibugs\" styles loaded twice. Migrate to type=general. See \u003Chttps://phabricator.wikimedia.org/T42284\u003E.");mw.log.warn("Gadget \"ReferenceTooltips\" styles loaded twice. Migrate to type=general. See \u003Chttps://phabricator.wikimedia.org/T42284\u003E.");mw.log.warn("Gadget \"main-page\" styles loaded twice. Migrate to type=general. See \u003Chttps://phabricator.wikimedia.org/T42284\u003E.");});




    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Reklama

    Czas generowania strony: 0.01 sek.