• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Geometria euklidesowa



    Podstrony: [1] [2] [3] 4
    Przeczytaj także...
    Elementy (gr. Στοιχεῖα, Stoicheia) – pochodzący z IV wieku p.n.e. traktat arytmetyczny i geometryczny, obejmujący swym zakresem podstawowe zagadnienia obu tych nauk.Przestrzeń euklidesowa – przestrzeń o geometrii euklidesowej. Jest ona naturalnym elementem modeli świata rzeczywistego (łac. geometria = mierzenie ziemi) i stanowi dobre przybliżenie przestrzeni fizycznych w warunkach makroskopowych, jednak nie nadaje się do opisu rzeczywistości w bardzo małych, atomowych, lub bardzo wielkich, astronomicznych, wielkościach. Jednowymiarowa przestrzeń euklidesowa nazywana jest prostą euklidesową, zaś dwuwymiarowa – płaszczyzną euklidesową. Przestrzenie te nazywa się również przestrzeniami afinicznymi euklidesowymi w odróżnieniu od przestrzeni liniowych euklidesowych, znanych szerzej jako przestrzenie unitarne.
    Zobacz też[]
  • geometria absolutna
  • Przypisy

    1. Księga I - Postulaty
    2. Model na Wolfram MathWorld
    3. Jedna teoria może mieć wiele modeli, nie jest to więc definiowanie pojęć pierwotnych, bo wówczas każde pojęcie pierwotne miałoby wiele wykluczających się definicji.
    4. The Euclidean model for space
    5. Viktor Vasilʹevich Prasolov, Vladimir Mikhaĭlovich Tikhomirov: Geometry. AMS Bookstore, 2001, s. 7. ISBN 0-8218-2038-9. ISBN 9780821820384.
    Geometria eliptyczna albo sferyczna (również geometria powierzchni kuli, tj. sfery) – jeden z rodzajów geometrii nieeuklidesowej, szczególny przypadek geometrii Riemanna dla stałej i dodatniej krzywizny.Linia prosta lub prosta – jedno z podstawowych pojęć geometrii, szczególny przypadek nieograniczonej z obydwu stron krzywej o nieskończonym promieniu krzywizny w każdym punkcie.


    Podstrony: [1] [2] [3] 4



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Przestrzeń trójwymiarowa - potoczna nazwa przestrzeni euklidesowej o trzech wymiarach, lub równoważnej jej przestrzeni kartezjańskiej. Przymiotnik "trójwymiarowa" oznacza, że każdemu punktowi tej przestrzeni odpowiada trójka uporządkowana liczb rzeczywistych, zwanych współrzędnymi. Każdej trójce liczb rzeczywistych także odpowiada punkt tej przestrzeni.
    Geometria syntetyczna - czyli geometria czysta - dział geometrii, w którym nie używa się metod algebraicznych i obliczeniowych do dowodzenia twierdzeń i rozwiązywania problemów. Wybitnymi znawcami geometrii syntetycznej byli między innymi Euklides, Apoloniusz z Pergi, Michel Chasles i Jakob Steiner.
    Okrąg – brzeg koła; zbiór wszystkich punktów płaszczyzny euklidesowej odległych od ustalonego punktu, nazywanego środkiem, o zadaną odległość, nazywaną promieniem.
    Moritz Pasch (ur. 8 listopada 1843 roku we Wrocławiu, zm. 20 września 1930 roku w Bad Homburg w Niemczech) – niemiecki matematyk.
    Geometria hiperboliczna (zwana także geometrią siodła, geometrią Łobaczewskiego lub geometrią Bolyaia-Łobaczewskiego) – jedna z geometrii nieeuklidesowych.
    Twierdzenie Desargues’a – jedno z pierwszych twierdzeń geometrii rzutowej, sformułowane i udowodnione w XVII wieku przez francuskiego matematyka Gerarda Desargues’a. Wraz z twierdzeniem Pascala stanowi przykład twierdzenia, które jest niezależne od oryginalnego układu aksjomatów geometrii podanego przez Euklidesa – oznacza to, że nie da się go udowodnić ani obalić, bez przyjęcia dodatkowych założeń.
    Geometria analityczna – dział geometrii zajmujący się badaniem figur geometrycznych metodami analitycznymi (obliczeniowymi) i algebraicznymi. Złożone rozważania geometryczne zostają w geometrii analitycznej sprowadzone do rozwiązywania układów równań, które opisują badane figury. Przedmiotem badań geometrii analitycznej jest zasadniczo przestrzeń euklidesowa i własności jej podzbiorów, choć wiele wyników można uogólnić na dowolne, skończenie wymiarowe przestrzenie liniowe.

    Reklama

    Czas generowania strony: 0.028 sek.