• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Geometria algebraiczna

    Przeczytaj także...
    Encyklopedia PWN – encyklopedia internetowa, oferowana – bezpłatnie i bez konieczności uprzedniej rejestracji – przez Wydawnictwo Naukowe PWN. Encyklopedia zawiera około 122 tysiące haseł i 5 tysięcy ilustracji.Hipoteza Riemanna to sformułowana w 1859 roku hipoteza dotycząca badanej przez niemieckiego matematyka Bernharda Riemanna funkcji dzeta. Jest jednym z największych nierozwiązanych problemów w matematyce. Mówi ona, że wszystkie tzw. nietrywialne zera (nierzeczywiste) tej funkcji mają część rzeczywistą równą ½. Problem ten ma duże znaczenie dla całej matematyki – w szczególności dla teorii liczb, ale również dla statystyki oraz fizyki. Clay Mathematics Institute ufundował nagrodę w wysokości miliona dolarów za dowód lub obalenie hipotezy Riemanna. Hipoteza Riemanna była 8. problemem z listy problemów Hilberta.
    Sir Andrew John Wiles (ur. 11 kwietnia 1953 w Cambridge) – mieszkający w USA angielski matematyk specjalizujący się w teorii liczb. Znany przede wszystkim z udowodnienia słynnego wielkiego twierdzenia Fermata.

    Geometria algebraiczna – dział matematyki z pogranicza algebry i geometrii, badający obiekty geometryczne metodami algebraicznymi lub struktury algebraiczne metodami geometrii, teorii funkcji analitycznych, teorii kategorii i innych podobnych.

    Rozwój geometrii analitycznej spowodował wyodrębnienie z niej geometrii algebraicznej w II połowie XIX wieku. Jedną z teorii czerpiących z geometrii algebraicznej jest teoria pierścieni przemiennych. Znajduje również zastosowania w fizyce.

    Geometria algebraiczna zajmuje centralne miejsce we współczesnej matematyce; jest spoiwem łączącym tak odległe od siebie dziedziny, jak analizę zespoloną, topologię i teorię liczb. Stosując metody geometrii algebraicznej, Andrew Wiles udowodnił wielkie twierdzenie Fermata, natomiast Pierre Deligne udowodnił hipotezę Weila (powiązaną z hipotezą Riemanna).

    Geometria analityczna – dział geometrii zajmujący się badaniem figur geometrycznych metodami analitycznymi (obliczeniowymi) i algebraicznymi. Złożone rozważania geometryczne zostają w geometrii analitycznej sprowadzone do rozwiązywania układów równań, które opisują badane figury. Przedmiotem badań geometrii analitycznej jest zasadniczo przestrzeń euklidesowa i własności jej podzbiorów, choć wiele wyników można uogólnić na dowolne, skończenie wymiarowe przestrzenie liniowe.Algebra ogólna – obiekt matematyczny będący przedmiotem badań algebry uniwersalnej. Czasami algebra uniwersalna nazywana jest algebrą ogólną, wówczas rozważane w niej obiekty nazywa się zwykle algebrami abstrakcyjnymi lub po prostu algebrami.

    Przypisy[ | edytuj kod]

    1. geometria algebraiczna, [w:] Encyklopedia PWN [online] [dostęp 2016-09-12].
    2. Geometria algebraiczna, [w:] Matematyka, Włodzimierz Waliszewski (red.), hasło Geometria algebraiczna, Warszawa: Wydawnictwa Szkolne i Pedagogiczne, 1988 (Encyklopedia szkolna), s. 72, ISBN 83-02-02551-8.
    3. Geometria. W: Encyklopedia powszechna PWN. T. 2. Warszawa: Państwowe Wydawnictwo Naukowe, 1984, s. 43. ISBN 83-01-00002-3.
    4. geometria, [w:] Encyklopedia PWN [online] [dostęp 2016-09-12].
    5. Harry Joseph D’Souza, Robert Alan Bix, Algebraic geometry, [w:] Encyclopædia Britannica [online], britannica.com, 2016 [dostęp 2016-09-12].
    6. Mark Andrew Ronan, Modern algebra, [w:] Encyclopædia Britannica [online], britannica.com, 2016 [dostęp 2016-09-12].
    7. Todd Rowland, Algebraic Geometry, [w:] MathWorld [online], Wolfram Research [dostęp 2016-09-12] (ang.).
    MathWorld – encyklopedia matematyczna online, sponsorowana przez Wolfram Research, twórcę i producenta programu Mathematica; współsponsorem jest National Science Foundation (National Science Digital Library).Analiza zespolona – dziedzina matematyki, w szczególności analizy matematycznej, obejmująca swą tematyką teorię funkcji zespolonych zmiennej rzeczywistej i zespolonej, jednej i wielu zmiennych – w tym bardzo rozbudowane teorie funkcji analitycznych, funkcji eliptycznych czy odwzorowań konforemnych. Ma zastosowania w teorii liczb, teorii fraktali, matematyce stosowanej, teorii przestrzeni Hilberta a także w pewnych dziedzinach fizyki.




    Warto wiedzieć że... beta

    Topologia (gr. tópos – miejsce, okolica; lógos – słowo, nauka) – jeden z najważniejszych kierunków w matematyce współczesnej. Obiektem jej badań są te własności figur geometrycznych i brył, które nie ulegają zmianie nawet po radykalnym zdeformowaniu tych figur (a więc np. położenie i sąsiedztwo). Własności takie nazywa się własnościami topologicznymi figury.
    Pierścień – struktura formalizująca własności algebraiczne liczb całkowitych oraz arytmetyki modularnej; intuicyjnie zbiór, którego elementy mogą być bez przeszkód dodawane, odejmowane i mnożone, lecz niekoniecznie dzielone. Badanie pierścieni umożliwiło uogólnienie innych pojęć matematycznych takich, jak np. liczby pierwsze (przez ideały pierwsze), wielomiany, ułamki oraz rozwinięcie teorii podzielności i wskazania przy tym najogólniejszej struktury, w której możliwe jest stosowanie algorytmu Euklidesa (tzw. pierścień Euklidesa). Dział matematyki opisujący te struktury nazywa się teorią pierścieni.
    Teoria liczb - dziedzina matematyki, zajmująca się badaniem własności liczb – początkowo tylko naturalnych, i do dziś dla wielu specjalistów są one szczególnie atrakcyjne.
    Włodzimierz Waliszewski (ur. 1934 w Ostrołęce, zm. 14 października 2013 w Łodzi) – polski matematyk, specjalista w zakresie geometrii różniczkowej, prof. dr hab.
    Algebra ogólna – obiekt matematyczny będący przedmiotem badań algebry uniwersalnej. Czasami algebra uniwersalna nazywana jest algebrą ogólną, wówczas rozważane w niej obiekty nazywa się zwykle algebrami abstrakcyjnymi lub po prostu algebrami.
    Wzór Taylora – przedstawienie funkcji (n+1)-razy różniczkowalnej za pomocą wielomianu zależnego od kolejnych jej pochodnych oraz dostatecznie małej reszty. Twierdzenia mówiące o możliwości takiego przedstawiania pewnych funkcji (nawet dość abstrakcyjnych przestrzeni) noszą zbiorczą nazwę twierdzeń Taylora od nazwiska angielskiego matematyka Brooka Taylora, który opublikował pracę na temat lokalnego przybliżania funkcji rzeczywistych w podany niżej sposób. Ta własność funkcji różniczkowalnych znana była już przed Taylorem – w 1671 odkrył ją James Gregory. W przypadku funkcji nieskończenie wiele razy różniczkowalnych, przedstawienie oparte na tej własności może przyjąć postać szeregu zwanego szeregiem Taylora. Poniżej podane jest uogólnione twierdzenie Taylora dla funkcji o wartościach w dowolnych przestrzeniach unormowanych – w szczególności jest więc ono prawdziwe dla funkcji o wartościach rzeczywistych czy wektorowych.
    Kontrola autorytatywna – w terminologii bibliotekoznawczej określenie procedur zapewniających utrzymanie w sposób konsekwentny haseł (nazw, ujednoliconych tytułów, tytułów serii i haseł przedmiotowych) w katalogach bibliotecznych przez zastosowanie wykazu autorytatywnego zwanego kartoteką wzorcową.

    Reklama

    Czas generowania strony: 0.703 sek.