• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Geometria afiniczna



    Podstrony: 1 [2] [3]
    Przeczytaj także...
    Rzut równoległy na płaszczyznę – odwzorowanie przestrzeni euklidesowej trójwymiarowej na daną płaszczyznę w ten sposób, że każdemu punktowi przestrzeni przypisany jest punkt przecięcia się prostej, równoległej do kierunku rzutowania, przechodzącej przez dany punkt, z płaszczyzną.Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.

    Geometria afiniczna – geometria oparta na pierwszym, drugim i piątym aksjomatach Euklidesa. Trzeci i czwarty aksjomat Euklidesa nie mają znaczenia, bo w geometrii tej nie rozpatruje się okręgów i nie mierzy się kątów ani odcinków (iloczyn skalarny nie jest pojęciem afinicznym). Proste równoległe natomiast odgrywają w niej podstawową rolę. Obecnie, po opublikowaniu Programu Erlangeńskiego Feliksa Kleina, przez geometrię afiniczną rozumie się geometrię niezmienniczą ze względu na grupę przekształceń (odwzorowań) afinicznych. Jedynymi izometriami wśród przekształceń afinicznych są półobroty i translacje. Jednokładności są również przekształceniami afinicznymi. Twierdzeniami afinicznymi w geometrii Euklidesa są te, które zachowują swoją prawdziwość przy rzutowaniu równoległym z jednej płaszczyzny na drugą.

    Felix Christian Klein (ur. 25 kwietnia 1849 w Düsseldorfie, zm. 22 czerwca 1925 w Getyndze) – niemiecki matematyk, profesor uniwersytetów Friedrich-Alexander-Universität Erlangen-Nürnberg, Uniwersytu w Lipsku i Getyndze oraz politechniki w Monachium. Od 1913 członek Berlińskiej Akademii Nauk.Geometria analityczna – dział geometrii zajmujący się badaniem figur geometrycznych metodami analitycznymi (obliczeniowymi) i algebraicznymi. Złożone rozważania geometryczne zostają w geometrii analitycznej sprowadzone do rozwiązywania układów równań, które opisują badane figury. Przedmiotem badań geometrii analitycznej jest zasadniczo przestrzeń euklidesowa i własności jej podzbiorów, choć wiele wyników można uogólnić na dowolne, skończenie wymiarowe przestrzenie liniowe.

    Obok przesunięć, półobrotów i jednokładności przekształceniami afinicznymi są rozciąganie i zgniatanie wzdłuż jakiejś prostej. Te ostatnie deformacje mogą być efektem np. rzutowań równoległych. W ujęciu Feliksa Kleina geometria afiniczna jest pewną grupą odwzorowań pośrednią między grupą podobieństw a grupą przekształceń rzutowych.

    Geometria uporządkowania – geometria, której jedynymi pojęciami pierwotnymi są punkty A, B, C, ... oraz trzyargumentowa relacja leżenia między [ABC], która zachodzi wtedy, gdy punkt B leży między punktami A i C. W geometrii tej, podobnie jak w geometrii rzutowej, pomija się pojęcie odległości (metryki). Geometria uporządkowania jest bazą dla geometrii absolutnej i geometrii afinicznej (ale nie dla geometrii rzutowej).Przestrzeń liniowa lub wektorowa – w matematyce zbiór obiektów (nazywanych "wektorami"), które mogą być, nieformalnie rzecz ujmując, skalowane i dodawane. Formalnie jest to zbiór z określonymi dwoma działaniami: dodawaniem elementów tej przestrzeni (wektorów) i mnożeniem przez elementy ustalonego ciała, które związane są ze sobą poniższymi aksjomatami. Przestrzenie liniowe to podstawowy obiekt badań algebry liniowej i analizy funkcjonalnej. Znajdują zastosowanie niemal we wszystkich gałęziach matematyki, naukach ścisłych i inżynierii.

    Aksjomatyka i modele[ | edytuj kod]

    Aksjomatykę geometrii afinicznej można zbudować przez dołączenie do aksjomatów geometrii uporządkowania następujących dwóch aksjomatów:

    1. Dla dowolnego punktu i dowolnej prostej nieprzechodzącej przez punkt istnieje na płaszczyźnie co najwyżej jedna prosta przechodząca przez punkt i nieprzecinająca prostej
    2. Jeśli są trzema parami różnych punktów współliniowych z innym punktem i tak rozmieszczonych, że prosta jest równoległa do prostej a prosta jest równoległa do prostej to także prosta jest równoległa do prostej

    W syntetycznym podejściu geometria afiniczna może być zbudowana na bazie geometrii euklidesowej, ale zubożonej o pojęcie przystawania. Aksjomatyka opisuje więc własności punktu, prostej i ich wzajemnego położenia oraz opisuje relację leżenia między (punktu między dwoma innymi punktami). Relację przystawania odcinków (a właściwie par punktów) równoległych można zdefiniować przy użyciu pojęcia równoległości i relacji leżenia między. Niestety tak zdefiniowana relacja przystawania jest zredukowana do pojedynczych prostych. Skutkiem tego nie można porównywać odcinków leżących na prostych nierównoległych, nie da się porównywać kątów o nierównoległych ramionach, nie ma też możliwości zdefiniowania kąta prostego nie ma więc pojęcia prostopadłości. Nie ma wreszcie możliwości odkładania trójkąta. Mimo to zachodzi tu spora część twierdzeń geometrii euklidesowej (m.in. liczne własności równoległoboków, twierdzenie Talesa, topologia na prostej i płaszczyźnie).

    Topologia (gr. tópos – miejsce, okolica; lógos – słowo, nauka) – jeden z najważniejszych kierunków w matematyce współczesnej. Obiektem jej badań są te własności figur geometrycznych i brył, które nie ulegają zmianie nawet po radykalnym zdeformowaniu tych figur (a więc np. położenie i sąsiedztwo). Własności takie nazywa się własnościami topologicznymi figury.Przekształcenie, odwzorowanie geometryczne – funkcja przekształcająca jeden zbiór punktów, nazywany figurą geometryczną, w drugi zbiór punktów w przestrzeni geometrycznej (przestrzeni euklidesowej, przestrzeni rzutowej itp.). W węższym znaczeniu jest to funkcja wzajemnie jednoznaczna przeprowadzająca przestrzeń geometryczną na siebie; ta druga definicja jest stosowana dla przekształceń geometrycznych tworzących grupy przekształceń.

    Geometrię afiniczną na płaszczyźnie można także otrzymać, startując z geometrii rzutowej na płaszczyźnie rzutowej. W tym celu wystarczy na płaszczyźnie rzutowej wskazać dowolną prostą i nazwać ją prostą w nieskończoności, a wszystkie punkty incydentne z tą wybraną prostą wystarczy nazwać punktami w nieskończoności. Wówczas zwykłe proste uznamy za równoległe jeśli przecinają się w jakimś punkcie w nieskończoności. Relację leżenia między dla punktów zwykłych definiujemy, korzystając z pojęcia relacji rozdzielania czterech punktów, spośród których jeden jest punktem w nieskończoności.

    Struktura matematyczna (także model, system semantyczny, model semantyczny, dziedzina, struktura pierwszego rzędu) - w matematyce zbiór obiektów matematycznych połączonych w pewien system.Twierdzenie Talesa – jedno z najważniejszych twierdzeń geometrii euklidesowej. Tradycja przypisuje jego sformułowanie Talesowi z Miletu.

    Geometria afiniczna ma analityczny model w postaci przestrzeni afinicznej, w której przestrzeń liniowa nie ma określonego iloczynu skalarnego.

    Podstrony: 1 [2] [3]




    Warto wiedzieć że... beta

    Library of Congress Control Number (LCCN) – numer nadawany elementom skatalogowanym przez Bibliotekę Kongresu wykorzystywany przez amerykańskie biblioteki do wyszukiwania rekordów bibliograficznych w bazach danych i zamawiania kart katalogowych w Bibliotece Kongresu lub u innych komercyjnych dostawców.
    Przystawanie (kongruencja) – w geometrii relacja równoważności figur zdefiniowana poprzez izometrię rozumianą intuicyjnie jako identyczność kształtu i wielkości figury: dwie figury uważa się za przystające (kongruentne), jeśli istnieje izometria między nimi.
    Geometria rzutowa to dział matematyki zajmujący się badaniem własności figur geometrycznych, które nie zmieniają się przy przekształceniach rzutowych. Do najważniejszych pojęć geometrii rzutowej należą: prosta, płaszczyzna oraz dwustosunek czwórki punktów. Twórcą geometrii rzutowej był francuski matematyk Jean-Victor Poncelet, który jej podstawy podał w 1822.
    Przestrzeń afiniczna (rozmaitość liniowa) – w matematyce, abstrakcyjna struktura formalizująca i uogólniająca geometryczno-afiniczne własności przestrzeni euklidesowych; intuicyjnie: przestrzeń liniowa, w której „zapomniano” jej początek. W przestrzeniach afinicznych można odejmować punkty, by wyznaczyć wektory oraz przesuwać punkt o wektor, tzn. dodawać wektory do punktu. W szczególności, nie ma wyróżnionego punktu, który mógłby służyć za początek. Jednowymiarowa przestrzeń afiniczna nazywana jest prostą afiniczną, a dwuwymiarowa – płaszczyzną afiniczną.
    Jednokładność, homotetia (gr. homo+thetos=położony) o środku r {displaystyle r} i niezerowej skali k {displaystyle k} - odwzorowanie geometryczne prostej, płaszczyzny lub przestrzeni określone następująco:
    Podobieństwo – przekształcenie geometryczne zachowujące stosunek odległości punktów gdy kształt figur jest zachowany oraz ich wielkość może się różnić. Także relacja równoważności utożsamiająca figury geometryczne, które nazywane są wtedy podobnymi, o ile istnieje podobieństwo przeprowadzające jedną na drugą.
    Odcinek – w geometrii część prostej zawarta pomiędzy dwoma jej punktami z tymi punktami włącznie. Odcinek w całości zawiera się wewnątrz tej prostej.

    Reklama

    Czas generowania strony: 0.811 sek.