• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Geometria



    Podstrony: 1 [2] [3]
    Przeczytaj także...
    Elementy (gr. Στοιχεῖα, Stoicheia) – pochodzący z IV wieku p.n.e. traktat arytmetyczny i geometryczny, obejmujący swym zakresem podstawowe zagadnienia obu tych nauk.Geometria eliptyczna albo sferyczna (również geometria powierzchni kuli, tj. sfery) – jeden z rodzajów geometrii nieeuklidesowej, szczególny przypadek geometrii Riemanna dla stałej i dodatniej krzywizny.
    Pierwsza książka o geometrii wydana w jęz. polskim w 1566 roku „Geometria to jest miernicka nauka” Stanisława Grzepskiego.
    Tablice geometryczne z encyklopedii z 1728 roku

    Geometria (gr. γεωμετρία; geo – ziemia, metria – miara) – dziedzina matematyki badająca dla wybranych przekształceń ich niezmienniki, od najprostszych, takich jak odległość, pole powierzchni, miara kąta, przez bardziej zaawansowane, jak krzywizna, punkt stały, czy wymiar. W zależności od rodzaju przekształceń mówi się o różnych rodzajach geometrii.

    Przestrzeń topologiczna – podstawowe pojęcie topologii; zbiór wyposażony w strukturę (tzw. topologię) wyróżniającą pewną rodzinę jego podzbiorów (tzw. zbiory otwarte), co umożliwia określenie czy dany punkt leży „blisko”, czy „daleko” od danego podzbioru (w jego domknięciu lub poza nim) mimo braku pojęcia odległości (metryki).Przestrzeń metryczna – zbiór z zadaną na nim metryką, tj. funkcją, która określa odległość między każdą parą elementów tego zbioru.

    Geometria euklidesowa zajmuje się przede wszystkim badaniem niezmienników (stałych) izometrii (zachowanie odległości) oraz podobieństw (zachowanie kątów), geometria afiniczna bada niezmienniki przekształceń afinicznych, zaś geometria rzutowa opisuje niezmienniki przekształceń rzutowych. Problemy te uogólnia się na inne przestrzenie i obiekty (np. przestrzeń Riemanna, czy przestrzenie metryczne), a metoda badania niezmienników jest podstawową metodą badania bardziej zaawansowanych obiektów matematycznych (np. przestrzenie topologiczne, abstrakcyjne grupy, pierścienie, itp.)

    Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.Język grecki, greka (starogr. dialekt attycki Ἑλληνικὴ γλῶττα, Hellenikè glõtta; nowogr. Ελληνική γλώσσα, Ellinikí glóssa lub Ελληνικά, Elliniká) – język indoeuropejski z grupy helleńskiej, w starożytności ważny język basenu Morza Śródziemnego. W cywilizacji Zachodu zaadaptowany obok łaciny jako język terminologii naukowej, wywarł wpływ na wszystkie współczesne języki europejskie, a także część pozaeuropejskich i starożytnych. Od X wieku p.n.e. zapisywany jest alfabetem greckim. Obecnie, jako język nowogrecki, pełni funkcję języka urzędowego w Grecji i Cyprze. Jest też jednym z języków oficjalnych Unii Europejskiej. Po grecku mówi współcześnie około 15 milionów ludzi. Język grecki jest jedynym językiem z helleńskich naturalnych, który nie wymarł.

    Geometria, podobnie jak arytmetyka należy do najstarszych nauk. Podobnie jak inne działy matematyki geometria wyewoluowała od badania kształtów znanych z codziennego życia do studiów nad nieskończenie wymiarowymi abstrakcyjnymi przestrzeniami matematycznymi.

    Spis treści

  • 1 Historia
  • 1.1 Aksjomaty Euklidesa
  • 1.2 Geometrie nieeuklidesowe
  • 2 Geometria a współczesna klasyfikacja nauk
  • 3 Przypisy
  • 4 Linki zewnętrzne
  • Moritz Pasch (ur. 8 listopada 1843 roku we Wrocławiu, zm. 20 września 1930 roku w Bad Homburg w Niemczech) – niemiecki matematyk.Geometria hiperboliczna (zwana także geometrią siodła, geometrią Łobaczewskiego lub geometrią Bolyaia-Łobaczewskiego) – jedna z geometrii nieeuklidesowych.


    Podstrony: 1 [2] [3]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Felix Christian Klein (ur. 25 kwietnia 1849 w Düsseldorfie, zm. 22 czerwca 1925 w Getyndze) – niemiecki matematyk, profesor uniwersytetów Friedrich-Alexander-Universität Erlangen-Nürnberg, Uniwersytu w Lipsku i Getyndze oraz politechniki w Monachium. Od 1913 członek Berlińskiej Akademii Nauk.
    Geometria analityczna – dział geometrii zajmujący się badaniem figur geometrycznych metodami analitycznymi (obliczeniowymi) i algebraicznymi. Złożone rozważania geometryczne zostają w geometrii analitycznej sprowadzone do rozwiązywania układów równań, które opisują badane figury. Przedmiotem badań geometrii analitycznej jest zasadniczo przestrzeń euklidesowa i własności jej podzbiorów, choć wiele wyników można uogólnić na dowolne, skończenie wymiarowe przestrzenie liniowe.
    Przekształcenie rzutowe (również transformacja rzutowa) - w geometrii rzutowej jest to funkcja wzajemnie jednoznaczna przeprowadzająca przestrzeń rzutową na siebie i zachowująca współliniowość punktów.
    Geometria afiniczna - jedna z możliwych geometrii. Podstawową figurą geometryczną w tej geometrii jest (podobnie jak w geometrii euklidesowej) prosta, podstawowym pojęciem jest równoległość dwóch prostych a podstawowym odwzorowaniem tzw. odwzorowanie afiniczne.
    Punkt stały odwzorowania pewnego zbioru w siebie - punkt, w którym wartość odwzorowania na argumencie jest równa temu argumentowi. Formalnie:
    Kraków (łac. Cracovia, niem. Krakau) – miasto na prawach powiatu w południowej Polsce, siedziba władz województwa małopolskiego, drugie w kraju pod względem liczby mieszkańców i pod względem powierzchni.
    Topologia (gr. tópos – miejsce, okolica; lógos – słowo, nauka) – jeden z najważniejszych kierunków w matematyce współczesnej. Obiektem jej badań są te własności figur geometrycznych i brył, które nie ulegają zmianie nawet po radykalnym zdeformowaniu tych figur (a więc np. położenie i sąsiedztwo). Własności takie nazywa się własnościami topologicznymi figury.

    Reklama