• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Funkcje elementarne



    Podstrony: 1 [2] [3]
    Przeczytaj także...
    Rozkład normalny, zwany też rozkładem Gaussa – jeden z najważniejszych rozkładów prawdopodobieństwa. Odgrywa ważną rolę w statystycznym opisie zagadnień przyrodniczych, przemysłowych, medycznych, społecznych itp. Wykres funkcji prawdopodobieństwa tego rozkładu jest krzywą dzwonową.Wartość bezwzględna a. moduł – dla danej liczby rzeczywistej wartość liczbowa nieuwzględniająca znaku liczby. Przykładowo Parser nie mógł rozpoznać (Nie można zapisać obrazu z wzorem w systemie plików.): 5

    Funkcje elementarnefunkcje, które powstają z funkcji, takich jak: funkcja stała, identyczność funkcje trygonometryczne i logarytm, za pomocą skończonej liczby operacji, takich jak dodawanie, odejmowanie, mnożenie, dzielenie, potęgowanie oraz złożenie.

    Funkcja wielu zmiennych – funkcja, której dziedzina została zdefiniowana jako podzbiór iloczynu kartezjańskiego co najmniej dwóch zbiorów. Wówczas elementy dziedziny są krotkami. Wiele podstawowych funkcji rozpatrywanych w matematyce jest funkcjami wielu zmiennych (np. działania).Funkcja wymierna – funkcja będąca ilorazem funkcji wielomianowych. Iloraz wielomianów realizujących dane funkcje wielomianowe nazywa się wyrażeniem wymiernym. Można powiedzieć, że funkcje wymierne mają się tak do funkcji wielomianowych jak liczby wymierne do liczb całkowitych.

    Definicja[ | edytuj kod]

    Zbiór wszystkich funkcji elementarnych konstruowany jest w następujący rekurencyjny sposób:

    Niech będzie zbiorem złożonym z następujących funkcji:

  • funkcji stałych postaci gdzie c jest liczbą rzeczywistą (w niektórych ujęciach liczbą zespoloną)
  • identyczności
  • funkcji trygonometrycznych
  • funkcji odwrotnych do trygonometrycznych
  • logarytmu
  • Jest to zbiór „cegiełek”, z których budowane są inne, bardziej skomplikowane funkcje.

    Wielomian – wyrażenie algebraiczne złożone ze zmiennych i stałych połączonych działaniami dodawania, odejmowania, mnożenia i podnoszenia do potęgi o stałym wykładniku naturalnym.Rekurencja, zwana także rekursją (ang. recursion, z łac. recurrere, przybiec z powrotem) to w logice, programowaniu i w matematyce odwoływanie się np. funkcji lub definicji do samej siebie.

    Niech będzie zbiorem operacji dwuargumentowych (tzn. funkcji dwóch zmiennych) w zbiorze liczb rzeczywistych (w niektórych ujęciach zespolonych), do którego należy:

  • dodawanie
  • odejmowanie
  • mnożenie
  • dzielenie
  • potęgowanie
  • Jest to zbiór ‘metod układania cegiełek’ ze zbioru

    Funkcje specjalne – umowna nazwa grupy funkcji, które nie są funkcjami elementarnymi, a jednocześnie odgrywają ważną rolę w wielu dziedzinach nauki. Funkcje specjalne zostały szczegółowo przebadane i stablicowane, a wiele programów komputerowych może obliczać ich wartości z dowolną dokładnością. Podstawowe funkcje specjalne są rozwiązaniami równań różniczkowych liniowych rzędu drugiego, o zmiennych współczynnikach. Niektóre funkcje specjalne stanowią rozwiązania równań różniczkowych nieliniowych drugiego i wyższych rzędów.Funkcje hiperboliczne – funkcje zmiennej rzeczywistej lub zespolonej będących sumą, różnicą lub ilorazem funkcji eksponencjalnych określone następująco:

    Zbiorem funkcji elementarnych nazywa się najmniejszy zbiór funkcji spełniający następujące warunki:

  • Jeśli oraz to funkcja również należy do
  • Jeśli to złożenie również należy do
  • Powyższa definicja jest poprawna, to znaczy istnieje (i to dokładnie jeden) najmniejszy zbiór spełniający powyższe warunki. Konstruuje się go rekurencyjnie:

    Funkcje cyklometryczne (funkcje kołowe) – funkcje odwrotne do funkcji trygonometrycznych ograniczonych do pewnych przedziałów.Liczby naturalne – liczby służące podawaniu liczności (trzy osoby, zob. liczebnik główny/kardynalny) i ustalania kolejności (trzecia osoba, zob. liczebnik porządkowy), poddane w matematyce dalszym uogólnieniom (odpowiednio: liczby kardynalne, liczby porządkowe). Badaniem własności liczb naturalnych zajmują się arytmetyka i teoria liczb. Według finitystów, zwolenników skrajnego nurtu filozofii matematyki, są to jedyne liczby, jakimi powinna zajmować się matematyka - słynne jest stwierdzenie propagatora arytmetyzacji wszystkich dziedzin matematyki Leopolda Kroneckera: Liczby całkowite stworzył dobry Bóg. Reszta jest dziełem człowieka.

    Zbiór zdefiniowany jest powyżej.

    Mając zdefiniowane zbiory zbiór definiuje się jako zbiór wszystkich funkcji jednej z postaci:

    Funkcje trygonometryczne (etym.) – funkcje matematyczne wyrażające między innymi stosunki między długościami boków trójkąta prostokątnego względem miar jego kątów wewnętrznych.Funkcja algebraiczna – funkcja, dla której istnieją takie wielomiany Wn(x), Wn-1(x), ..., W1(x), W0(x) nie wszystkie równe tożsamościowo zeru, że dla każdego x z dziedziny funkcji spełnione jest równanie
  • gdzie oraz
  • gdzie
  • Zbiór definiuje się jako sumę zbiorów

    Funkcja (łac. functio, -onis, „odbywanie, wykonywanie, czynność”) – dla danych dwóch zbiorów X i Y przyporządkowanie każdemu elementowi zbioru X dokładnie jednego elementu zbioru Y. Oznacza się ją na ogół f, g, h itd.Zbiór liczb rzeczywistych – uzupełnienie zbioru liczb wymiernych. Zbiór liczb rzeczywistych zawiera m.in. liczby naturalne, ujemne, całkowite, pierwiastki liczb dodatnich, wymierne, niewymierne, przestępne, itd. Z drugiej strony na liczby rzeczywiste można też patrzeć jak na szczególne przypadki liczb zespolonych.


    Podstrony: 1 [2] [3]




    Warto wiedzieć że... beta

    Dystrybuanta (fr. distribuer „rozdzielać, rozdawać”) – w rachunku prawdopodobieństwa, statystyce i dziedzinach pokrewnych, funkcja rzeczywista jednoznacznie wyznaczająca rozkład prawdopodobieństwa (tj. miarę probabilistyczną określoną na σ-ciele borelowskich podzbiorów prostej), a więc zawierająca wszystkie informacje o tym rozkładzie. Dystrybuanty są efektywnym narzędziem badania prawdopodobieństwa, ponieważ są obiektami prostszymi niż rozkłady prawdopodobieństwa. W statystyce dystrybuanta rozkładu próby zwana jest dystrybuantą empiryczną i jest blisko związana z pojęciem rangi.
    Teoria obliczeń to dział informatyki teoretycznej. Dzieli się on na dwie główne części: teorię obliczalności oraz złożoność obliczeniową. Pierwszy z nich zajmuje się odpowiedzią na pytanie, które problemy dają się rozwiązać przy pomocy komputera, a drugi tym jak szybko da się to zrobić.

    Reklama

    Czas generowania strony: 0.027 sek.