• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Funkcja wykładnicza



    Podstrony: 1 [2] [3]
    Przeczytaj także...
    Zero (zapisywane jako 0) – element neutralny dodawania; najmniejsza nieujemna liczba. To, czy zero jest uznawane za liczbę naturalną, jest kwestią umowy – czasem włącza się, a czasem wyklucza się je z tego zbioru. Zero nie jest ani liczbą pierwszą, ani liczbą złożoną.Funkcja monotoniczna – funkcja, która zachowuje określony rodzaj porządku zbiorów. Pojęcie powstałe pierwotnie na gruncie analizy zostało uogólnione na gruncie teorii porządku.

    Funkcja wykładniczafunkcja postaci: , gdzie .

    Niektórzy autorzy wymagają, aby podstawa funkcji wykładniczej była różna od 1, ponieważ dla funkcja jest funkcją stałą.

    Wielomian – wyrażenie algebraiczne złożone ze zmiennych i stałych połączonych działaniami dodawania, odejmowania, mnożenia i podnoszenia do potęgi o stałym wykładniku naturalnym.Algorytm Rungego-Kutty (metoda Rungego-Kutty) – metoda numeryczna do iteracyjnego rozwiązywania równań różniczkowych zwyczajnych. Stosowana głównie w symulacjach fizycznych. Opracowana około 1900 przez niemieckich matematyków: Carla Rungego oraz Martina Kuttę.

    Spis treści

  • 1 Własności
  • 2 Funkcja eksponencjalna
  • 2.1 Płaszczyzna zespolona
  • 3 Zobacz też
  • 4 Przypisy


  • Podstrony: 1 [2] [3]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Silnią liczby naturalnej n (w notacji matematycznej: n!, co czytamy „n silnia”) nazywamy iloczyn wszystkich liczb naturalnych nie większych niż n. Oznaczenie n! wprowadził w 1808 roku Christian Kramp.
    Funkcja okresowa – funkcja, której wartości „powtarzają się” cyklicznie w stałych odstępach (ścisła definicja poniżej). Klasycznym jej przykładem jest funkcja sinus:
    Podstawa logarytmu naturalnego, liczba e, liczba Eulera, liczba Nepera – stała matematyczna wykorzystywana w wielu dziedzinach matematyki i fizyki. W przybliżeniu wynosi 2,7182818, oznacza się ją literą e.
    Funkcja całkowita – funkcja zmiennej zespolonej, która jest analityczna na całej płaszczyźnie zespolonej. Oznacza to, że funkcję tę można rozwinąć w szereg Taylora zbieżny na całej płaszczyźnie:
    Technika kolorowania dziedziny w matematyce – sposób prezentacji wykresu funkcji zmiennej zespolonej. Polega on na przypisaniu kolorów z koła barw do płaszczyzny zespolonej. Możliwe są różne przekształcenia lecz w praktyce stosuje się dwa:
    Funkcja (łac. functio, -onis, „odbywanie, wykonywanie, czynność”) – dla danych dwóch zbiorów X i Y przyporządkowanie każdemu elementowi zbioru X dokładnie jednego elementu zbioru Y. Oznacza się ją na ogół f, g, h itd.
    Funkcja holomorficzna – główny obiekt badań analizy zespolonej; funkcja zdefiniowana na otwartym podzbiorze płaszczyzny liczb zespolonych C {displaystyle mathbb {C} } o wartościach w C {displaystyle mathbb {C} } , która jest różniczkowalna w sensie zespolonym w każdym punkcie tego podzbioru.

    Reklama