• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Funkcja tożsamościowa



    Podstrony: 1 [2] [3]
    Przeczytaj także...
    Kategoria – pojęcie wyodrębniające szereg algebraicznych własności rodzin morfizmów między obiektami matematycznymi tego samego typu (zbiorów, przestrzeni topologicznych, przestrzeni liniowych, grup itp.) pod warunkiem, że te rodziny zawierają odwzorowanie tożsamościowe i są zamknięte względem kolejnego wykonywania superpozycji (lub iloczynu) odwzorowań. Pojęcie kategorii zostało wprowadzone w pracy Eilenberga i Mac Lane.Wykres funkcji – potocznie graficzne przedstawienie funkcji. Ogólniej, w matematyce wykresem funkcji f : X → Y {displaystyle f:X o Y} , gdzie X {displaystyle X} i Y {displaystyle Y} są dowolnymi zbiorami, nazywamy podzbiór S ⊂ X × Y {displaystyle Ssubset X imes Y} dany wzorem:

    Funkcja tożsamościowa (funkcja identycznościowa, tożsamość, identyczność)funkcja danego zbioru w siebie, która każdemu argumentowi przypisuje jego samego. Intuicyjnie: funkcja, która „nic nie zmienia”.

    W niektórych dyscyplinach matematycznych zamiast słowa funkcja używa się słów odwzorowanie lub przekształcenie.

    Gdy funkcja jest określona na specyficznej dziedzinie czy przeciwdziedzinie, to używa się też innych nazw. Np. funkcjonał - funkcja z przestrzeni wektorowej na ciało liczbowe, operator - funkcja z przestrzeni wektorowej na przestrzeń wektorową, itp.

    Funkcja charakterystyczna zbioru – jedno z pojęć matematycznych, mających zastosowanie w teorii miary i teorii ciągów funkcji mierzalnych. Przykładem funkcji charakterystycznej jest funkcja Dirichleta (funkcja charakterystyczna zbioru liczb wymiernych).Teoria mnogości lub inaczej: teoria zbiorów – dział matematyki, a zarazem logiki matematycznej zapoczątkowany przez niemieckiego matematyka Georga Cantora pod koniec XIX wieku. Teoria początkowo wzbudzała wiele kontrowersji, jednak wraz z postępem matematyki zaczęła ona pełnić rolę fundamentu, na którym opiera się większość matematycznych rozważań.

    Spis treści

  • 1 Definicja
  • 2 Własności
  • 3 Przykłady
  • 4 Zobacz też


  • Podstrony: 1 [2] [3]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Przestrzeń liniowa lub wektorowa – w matematyce zbiór obiektów (nazywanych "wektorami"), które mogą być, nieformalnie rzecz ujmując, skalowane i dodawane. Formalnie jest to zbiór z określonymi dwoma działaniami: dodawaniem elementów tej przestrzeni (wektorów) i mnożeniem przez elementy ustalonego ciała, które związane są ze sobą poniższymi aksjomatami. Przestrzenie liniowe to podstawowy obiekt badań algebry liniowej i analizy funkcjonalnej. Znajdują zastosowanie niemal we wszystkich gałęziach matematyki, naukach ścisłych i inżynierii.
    Relacja dwuargumentowa, dwuczłonowa albo binarna – w teorii mnogości dowolny podzbiór iloczynu kartezjańskiego dwóch zbiorów, która formalizuje intuicję pewnego związku, czy zależności między elementami wspomnianych zbiorów (dane dwa elementy pozostają w związku albo łączy je pewna zależność lub nie). Do najważniejszych relacji tego rodzaju należy zaliczyć funkcje i działania jednoargumentowe (zob. Własności). Pojęcie relacji (dwuargumentowych) uogólnia się na klasy: ma to na celu opisanie przykładowo równości różnych obiektów jako relacji między nimi i ominięcie przy tym różnych paradoksów związanych z teorią mnogości (np. paradoks zbioru wszystkich zbiorów).
    Funkcjonał – w matematyce to przekształcenie z przestrzeni wektorowej w ciało skalarne, nad którym rozpięta jest ta przestrzeń. Jest to funkcja, której argumentami są wektory, a wartościami skalary. Często tą przestrzenią jest przestrzeń funkcji - wtedy argumentem funkcjonału jest funkcja. Dlatego czasem uważany jest za funkcję funkcji.
    Zbiór – pojęcie pierwotne teorii zbiorów (znanej szerzej jako teoria mnogości; za jej twórcę uważa się Georga Cantora) leżące u podstaw całej matematyki; intuicyjnie jest to nieuporządkowany zestaw różnych obiektów, czy też kolekcja niepowtarzających się komponentów bez wyróżnionej kolejności.
    Funkcja (łac. functio, -onis, „odbywanie, wykonywanie, czynność”) – dla danych dwóch zbiorów X i Y przyporządkowanie każdemu elementowi zbioru X dokładnie jednego elementu zbioru Y. Oznacza się ją na ogół f, g, h itd.
    Ciało liczbowe – każde ciało będące skończonym rozszerzeniem algebraicznym ciała liczb wymiernych Q {displaystyle mathbb {Q} } . Innymi słowy, jest to ciało zawierające Q {displaystyle mathbb {Q} } jako podciało oraz którego wymiar jako przestrzeni wektorowej nad Q {displaystyle mathbb {Q} } jest skończony.
    Funkcja wzajemnie jednoznaczna (bijekcja) – funkcja będąca jednocześnie funkcją różnowartościową i "na". Innymi słowy, bijekcja to funkcja (relacja) taka, że każdemu elementowi obrazu odpowiada dokładnie jeden element dziedziny.

    Reklama

    Czas generowania strony: 0.028 sek.