• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Funkcja ograniczona



    Podstrony: [1] [2] 3
    Przeczytaj także...
    Wielomian – wyrażenie algebraiczne złożone ze zmiennych i stałych połączonych działaniami dodawania, odejmowania, mnożenia i podnoszenia do potęgi o stałym wykładniku naturalnym.Przestrzeń metryczna – zbiór z zadaną na nim metryką, tj. funkcją, która określa odległość między każdą parą elementów tego zbioru.
    Przykłady[ | edytuj kod]
  • Funkcje sinus i cosinus są ograniczone – wszystkie ich wartości należą do przedziału
  • Funkcje są nieograniczone. Funkcja kwadratowa jest jednak ograniczona z dołu. Ogólnie, wszystkie wielomiany stopnia niezerowego i różne od wielomianu zerowego są nieograniczone.
  • Ciąg jest ograniczony, gdyż wszystkie jego wyrazy należą do przedziału
  • Ciąg choć ograniczony z dołu, nie jest ograniczony z góry, zatem jest nieograniczony.
  • Ciąg nie jest ograniczony z dołu, natomiast posiada ograniczenie górne.
  • Odległość punktów (w ogólności metryka), długość wektora (w ogólności norma) – to funkcje ograniczone z dołu przez zero, ale nie z góry.
  • Długość krzywej (np. obwód figury), pole powierzchni i objętość – przykłady miar, które z definicji są ograniczone z dołu przez zero.
  • Prawdopodobieństwo – miara ograniczona z dołu przez 0, z góry przez 1.
  • Zobacz też[ | edytuj kod]

  • operator ograniczony
  • Długość krzywej – wielkość charakteryzująca krzywą; jeśli jest ona dobrze określona, to daną krzywą nazywa się prostowalną lub rektyfikowalną.Ciąg – w matematyce pojęcie oddające intuicję ponumerowania, czy też uporządkowania elementów zbioru. W zależności od rodzaju elementów zbioru stosuje się różne nazwy: w przypadku liczb mówi się o ciągach liczbowych, bądź bardziej precyzyjnie, np. w przypadku zbioru liczb całkowitych, rzeczywistych czy zespolonych, ciąg nazywa się wtedy odpowiednio ciągiem całkowitoliczbowym, rzeczywistym i zespolonym. Jeśli elementami zbioru są funkcje, to ciąg nazywa się ciągiem funkcyjnym. Ciąg powstały poprzez wybranie elementów innego ciągu nazywa się podciągiem.


    Podstrony: [1] [2] 3



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Objętość – miara przestrzeni, którą zajmuje dane ciało w przestrzeni trójwymiarowej. W układzie SI jednostką objętości jest metr sześcienny, jednostka zbyt duża do wykorzystania w życiu codziennym. Z tego względu najpopularniejszą w Polsce jednostką objętości jest jeden litr (l) (1 l = 1 dm = 0,001 m³).
    Pole powierzchni (potocznie po prostu powierzchnia figury lub pole figury) – miara, przyporządkowująca danej figurze nieujemną liczbę w pewnym sensie charakteryzującą jej rozmiar.
    Przestrzeń liniowo-topologiczna – przestrzeń liniowa, w której istnieje taka topologia (dla której dodatkowo zakłada się, że każdy punkt tej przestrzeni jest zbiorem domkniętym, innymi słowy przestrzeń spełnia pierwszy aksjomat oddzielania), że działania dodawania wektorów i mnożenia przez skalar są ciągłe. Można udowodnić, że każda przestrzeń liniowo-topologiczna jest przestrzenią Hausdorffa, a nawet jest przestrzenią regularną. Grupa addytywna przestrzeni liniowo-topologicznej jest grupą topologiczną. Każda przestrzeń unormowana (a więc np. dowolna przestrzeń Banacha czy Hilberta) jest przestrzenią liniowo-topologiczną.
    Prawdopodobieństwo – ogólne określenie jednego z wielu pojęć służących modelowaniu doświadczenia losowego poprzez przypisanie poszczególnym zdarzeniom losowym liczb, zwykle z przedziału jednostkowego (w zastosowaniach często wyrażanych procentowo), wskazujących szanse ich zajścia. W rozumieniu potocznym wyraz „prawdopodobieństwo” odnosi się do oczekiwania względem rezultatu zdarzenia, którego wynik nie jest znany (niezależnie od tego, czy jest ono w jakimś sensie zdeterminowane, miało miejsce w przeszłości, czy dopiero się wydarzy); w ogólności należy je rozumieć jako pewną miarę nieprzewidywalności.
    Przedział – zbiór elementów danego zbioru częściowo uporządkowanego, zawartych między dwoma ustalonymi elementami tego zbioru, nazywanymi początkiem i końcem przedziału.
    Miara – rozważana w matematyce funkcja służąca określeniu „wielkości” zbiorów poprzez przypisanie im pewnej nieujemnej liczby.
    Wektor (z łac. [now.], „niosący; ten, który niesie; nośnik”, od vehere, „nieść”; via, „droga”) – istotny w matematyce elementarnej, inżynierii i fizyce obiekt mający moduł (zwany też – zdaniem niektórych niepoprawnie - długością lub wartością), kierunek wraz ze zwrotem (określającym orientację wzdłuż danego kierunku).

    Reklama

    Czas generowania strony: 0.013 sek.