• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Funkcja holomorficzna



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Przekształcenie liniowe – w algebrze liniowej funkcja między przestrzeniami liniowymi (nad ustalonym ciałem) zachowująca ich strukturę; z punktu widzenia algebry jest to zatem homomorfizm (a z punktu widzenia teorii kategorii – morfizm kategorii) przestrzeni liniowych nad ustalonym ciałem. W przypadku przestrzeni skończonego wymiaru z ustalonymi bazami do opisu przekształceń liniowych między nimi stosuje się zwykle macierze (zob. wybór baz).Funkcja wielu zmiennych – funkcja, której dziedzina została zdefiniowana jako podzbiór iloczynu kartezjańskiego co najmniej dwóch zbiorów. Wówczas elementy dziedziny są krotkami. Wiele podstawowych funkcji rozpatrywanych w matematyce jest funkcjami wielu zmiennych (np. działania).
    Prostokątna siatka (u góry) wraz z jej obrazem danym względem funkcji holomorficznej f (na dole).

    Funkcja holomorficzna – główny obiekt badań analizy zespolonej; funkcja zdefiniowana na otwartym podzbiorze płaszczyzny liczb zespolonych o wartościach w która jest różniczkowalna w sensie zespolonym w każdym punkcie tego podzbioru.

    Równanie różniczkowe cząstkowe to równanie, w którym występuje niewiadoma funkcja dwóch lub więcej zmiennych oraz niektóre z jej pochodnych cząstkowych.Wielomian – wyrażenie algebraiczne złożone ze zmiennych i stałych połączonych działaniami dodawania, odejmowania, mnożenia i podnoszenia do potęgi o stałym wykładniku naturalnym.

    Holomorficzność funkcji jest warunkiem dużo silniejszym niż różniczkowalność w sensie rzeczywistym, gdyż funkcja o tej własności jest nieskończenie wiele razy różniczkowalna, przez co może być przedstawiona za pomocą wzoru (szeregu) Taylora.

    Nomenklatura[ | edytuj kod]

    Słowo „holomorficzny” zostało wprowadzone przez dwóch studentów Cauchy’ego, Briota (1817–1882) oraz Bouqueta (1819–1895), i pochodzi od greckiego ὅλος (holos) oznaczającego „całość” oraz μoρφń (morfe) oznaczającego „kształt”, „wygląd”.

    Odwzorowanie równokątne, wiernokątne lub konforemne – w matematyce funkcja zachowująca kąty. Zwykle jest to funkcja między obszarami płaszczyzny zespolonej.Granica – pojęcie używane w matematyce określające zachowania funkcji, a w szczególności ciągu, gdy ich argumenty "zbliżają się" do pewnej wartości lub nieskończoności. Granice używane są w rachunku różniczkowo-całkowym i innych działach analizy matematyczej do definiowania pochodnych i ciągłości.

    Często, wymiennie z terminem „funkcja holomorficzna”, stosuje się również nazwę funkcja analityczna, jednak jest ona także używana w szerszym sensie – funkcji (rzeczywistej, zespolonej lub ogólniejszego typu), która jest równa swojemu rozwinięciu w szereg Taylora w dowolnym punkcie swojej dziedziny. Nietrywialny fakt, że klasa funkcji analitycznych pokrywa się z klasą funkcji holomorficznych jest istotnym twierdzeniem analizy zespolonej. W związku z tym wielu matematyków przedkłada termin „funkcja holomorficzna” nad „funkcja analityczna”, choć ten drugi nadal jest szeroko rozpowszechniony. O funkcjach holomorficznych mówi się także, że są regularne (zob. funkcja regularna), z kolei funkcje, które nie są holomorficzne, nazywa się czasem osobliwymi.

    Język grecki, greka (starogr. dialekt attycki Ἑλληνικὴ γλῶττα, Hellenikè glõtta; nowogr. Ελληνική γλώσσα, Ellinikí glóssa lub Ελληνικά, Elliniká) – język indoeuropejski z grupy helleńskiej, w starożytności ważny język basenu Morza Śródziemnego. W cywilizacji Zachodu zaadaptowany obok łaciny jako język terminologii naukowej, wywarł wpływ na wszystkie współczesne języki europejskie, a także część pozaeuropejskich i starożytnych. Od X wieku p.n.e. zapisywany jest alfabetem greckim. Obecnie, jako język nowogrecki, pełni funkcję języka urzędowego w Grecji i Cyprze. Jest też jednym z języków oficjalnych Unii Europejskiej. Po grecku mówi współcześnie około 15 milionów ludzi. Język grecki jest jedynym językiem z helleńskich naturalnych, który nie wymarł.Przestrzeń liniowo-topologiczna lokalnie wypukła – przestrzeń liniowo-topologiczna, która ma bazę lokalną złożoną ze zbiorów wypukłych. Ze względu na dobre własności jest to ważna klasa przestrzeni liniowo-topologicznych rozważanych w analizie funkcjonalnej.

    Funkcję, która jest holomorficzna na całej płaszczyźnie zespolonej nazywa się funkcją całkowitą (całkowitość oddaje tu „całość”, dlatego funkcji tej nie należy mylić z funkcją określoną w liczbach całkowitych). Z kolei wyrażanie „holomorficzna w punkcie ” oznacza funkcję nie tylko różniczkowalną w punkcie ale różniczkowalną wszędzie wewnątrz pewnego otwartego koła o środku w na płaszczyźnie zespolonej.

    Przestrzeń liniowa lub wektorowa – w matematyce zbiór obiektów (nazywanych "wektorami"), które mogą być, nieformalnie rzecz ujmując, skalowane i dodawane. Formalnie jest to zbiór z określonymi dwoma działaniami: dodawaniem elementów tej przestrzeni (wektorów) i mnożeniem przez elementy ustalonego ciała, które związane są ze sobą poniższymi aksjomatami. Przestrzenie liniowe to podstawowy obiekt badań algebry liniowej i analizy funkcjonalnej. Znajdują zastosowanie niemal we wszystkich gałęziach matematyki, naukach ścisłych i inżynierii.Wzór Taylora – przedstawienie funkcji (n+1)-razy różniczkowalnej za pomocą wielomianu zależnego od kolejnych jej pochodnych oraz dostatecznie małej reszty. Twierdzenia mówiące o możliwości takiego przedstawiania pewnych funkcji (nawet dość abstrakcyjnych przestrzeni) noszą zbiorczą nazwę twierdzeń Taylora od nazwiska angielskiego matematyka Brooka Taylora, który opublikował pracę na temat lokalnego przybliżania funkcji rzeczywistych w podany niżej sposób. Ta własność funkcji różniczkowalnych znana była już przed Taylorem – w 1671 odkrył ją James Gregory. W przypadku funkcji nieskończenie wiele razy różniczkowalnych, przedstawienie oparte na tej własności może przyjąć postać szeregu zwanego szeregiem Taylora. Poniżej podane jest uogólnione twierdzenie Taylora dla funkcji o wartościach w dowolnych przestrzeniach unormowanych – w szczególności jest więc ono prawdziwe dla funkcji o wartościach rzeczywistych czy wektorowych.

    Definicja[ | edytuj kod]

    Niech będzie otwartym podzbiorem zaś będzie funkcją zespoloną określoną na O funkcji mówi się, że jest różniczkowalna w sensie zespolonym lub ma pochodną zespoloną w punkcie jeżeli istnieje granica

    Analiza zespolona – dziedzina matematyki, w szczególności analizy matematycznej, obejmująca swą tematyką teorię funkcji zespolonych zmiennej rzeczywistej i zespolonej, jednej i wielu zmiennych – w tym bardzo rozbudowane teorie funkcji analitycznych, funkcji eliptycznych czy odwzorowań konforemnych. Ma zastosowania w teorii liczb, teorii fraktali, matematyce stosowanej, teorii przestrzeni Hilberta a także w pewnych dziedzinach fizyki.Twierdzenie odwrotne – dla danego twierdzenia twierdzenie w którym założenie zamieniono z tezą wyjściowego twierdzenia. Niech będzie dane twierdzenie: jeśli A, to B; wtedy twierdzenie odwrotne do niego jest zdaniem jeśli B, to A. Twierdzenie odwrotne do danego prawdziwego twierdzenia nie musi być zdaniem prawdziwym. Twierdzenie odwrotne jest równoważne twierdzeniu przeciwnemu.

    którą nazywa się pochodną zespoloną funkcji w punkcie

    Liczby całkowite – liczby naturalne dodatnie N + = { 1 , 2 , 3 , … } {displaystyle mathbb {N} _{+}={1,2,3,dots }} oraz liczby przeciwne do nich { − 1 , − 2 , − 3 , … } {displaystyle {-1,-2,-3,dots }} , a także liczba zero. Uogólnieniem liczb całkowitych są liczby wymierne i tym samym liczby rzeczywiste, szczególnym przypadkiem liczb całkowitych są: liczby naturalne.Ciąg – w matematyce pojęcie oddające intuicję ponumerowania, czy też uporządkowania elementów zbioru. W zależności od rodzaju elementów zbioru stosuje się różne nazwy: w przypadku liczb mówi się o ciągach liczbowych, bądź bardziej precyzyjnie, np. w przypadku zbioru liczb całkowitych, rzeczywistych czy zespolonych, ciąg nazywa się wtedy odpowiednio ciągiem całkowitoliczbowym, rzeczywistym i zespolonym. Jeśli elementami zbioru są funkcje, to ciąg nazywa się ciągiem funkcyjnym. Ciąg powstały poprzez wybranie elementów innego ciągu nazywa się podciągiem.

    Powyższa granica jest wzięta po wszystkich ciągach liczb zespolonych zbiegających do i dla wszystkich takich ciągów iloraz różnicowy ma zbiegać do tej samej liczby Intuicyjnie, jeżeli jest różniczkowalna w sensie zespolonym w z kierunku to obrazy będą zbiegać do punktu z kierunku gdzie ostatni iloczyn jest mnożeniem liczb zespolonych. To pojęcie różniczkowalności dzieli kilka wspólnych własności z różniczkowalnością w sensie rzeczywistym: jest liniowe i spełnia reguły iloczynu, ilorazu i łańcuchową.

    Holomorficzność nieskończeniewymiarowa – dział analizy funkcjonalnej, gałęzi matematyki badający uogólnienia funkcji holomorficznych na funkcje określone na zespolonych przestrzeniach Banacha (lub ogólniej: przestrzeniach Frécheta), najczęściej nieskończonego wymiaru, i przyjmujące w nich wartości. Można uważać ją za część nieliniowej analizy funkcjonalnej.Wzór całkowy Cauchy’ego – istotny wzór analizy zespolonej. Wyraża fakt, że funkcja holomorficzna zdefiniowana na dysku jest całkowicie zdeterminowana przez wartości, które przyjmuje na brzegu tego dysku.

    Jeżeli jest różniczkowalna w sensie zespolonym w każdym punkcie to funkcję nazywa się holomorficzną na Funkcja jest holomorficzna w punkcie jeżeli jest holomorficzna w pewnym otoczeniu Funkcja jest holomorficzna na pewnym nieotwartym zbiorze jeżeli jest holomorficzna na zbiorze otwartym zawierającym

    Funkcje trygonometryczne (etym.) – funkcje matematyczne wyrażające między innymi stosunki między długościami boków trójkąta prostokątnego względem miar jego kątów wewnętrznych.Funkcja meromorficzna – funkcja f {displaystyle f} , określona na otwartym podzbiorze D {displaystyle D} płaszczyzny zespolonej, która jest funkcją holomorficzną w zbiorze D ∖ S {displaystyle Dsetminus S} , gdzie S {displaystyle S;} oznacza zbiór punktów izolowanych, z których każdy jest biegunem funkcji f {displaystyle f} .

    Związek między różniczkowalnością w sensie rzeczywistym i w sensie zespolonym jest następujący: jeżeli funkcja zespolona jest holomorficzna, to i mają pierwsze pochodne cząstkowe względem oraz i spełniają równania Cauchy’ego-Riemanna:

    Twierdzenie odwrotne nie jest prawdziwe. Prostym odwróceniem tego wyniku jest, że

    Przestrzeń Banacha – przestrzeń unormowana X (z normą ||·||), w której metryka wyznaczona przez normę, tj. metryka d dana wzoremFunkcja antyholomorficzna (także funkcja antyanalityczna) – w matematyce funkcja mająca bliski związek z funkcją holomorficzną.
    jeżeli oraz mają ciągłe pierwsze pochodne cząstkowe i spełniają równania Cauchy’ego-Riemanna, to wtedy jest holomorficzna.

    Bardziej zadowalającym odwróceniem, które nastręcza więcej trudności przy dowodzie, jest twierdzenie Loomana-Menchoffa:

    Funkcja całkowita – funkcja zmiennej zespolonej, która jest analityczna na całej płaszczyźnie zespolonej. Oznacza to, że funkcję tę można rozwinąć w szereg Taylora zbieżny na całej płaszczyźnie:Argument liczby zespolonej – miara kąta skierowanego między wektorem reprezentującym liczbę zespoloną z {displaystyle z} na płaszczyźnie zespolonej, a osią rzeczywistą. Oznaczenie: arg ⁡ ( z ) {displaystyle arg(z)} .
    jeżeli jest ciągła, a i mają pierwsze pochodne cząstkowe i spełniają równania Cauchy’ego-Riemanna, to jest holomorficzna.
    Funkcja (łac. functio, -onis, „odbywanie, wykonywanie, czynność”) – dla danych dwóch zbiorów X i Y przyporządkowanie każdemu elementowi zbioru X dokładnie jednego elementu zbioru Y. Oznacza się ją na ogół f, g, h itd.Wzór Eulera – wzór analizy zespolonej wiążący funkcje trygonometryczne z zespoloną funkcją wykładniczą określany nazwiskiem Leonharda Eulera.


    Podstrony: 1 [2] [3] [4]




    Warto wiedzieć że... beta

    Równania Cauchy’ego-Riemanna – w analizie zespolonej, dziale matematyki, dwa równania różniczkowe cząstkowe noszące nazwiska Augustina Cauchy’ego i Bernharda Riemanna będące warunkami koniecznym i dostatecznym na to, aby funkcja różniczkowalna była holomorficzna w zbiorze otwartym.
    Przestrzeń unormowana – przestrzeń liniowa, w której określono pojęcie normy będące bezpośrednim uogólnieniem pojęcia długości (modułu) wektora w przestrzeni euklidesowej.
    Analiza funkcjonalna – dział analizy matematycznej zajmujący się głównie badaniem własności przestrzeni funkcyjnych. Rozwinął się w trakcie studiów nad odwzorowaniami zwanymi transformacjami lub operatorami (przede wszystkim nad transformacją Fouriera) oraz równaniami różniczkowymi i całkowymi.
    Koło – zbiór wszystkich punktów płaszczyzny, których odległość od ustalonego punktu na tej płaszczyźnie (środka koła) nie przekracza pewnej wartości (promienia koła).
    Trywialność – w matematyce cecha obiektów (np. grup, czy przestrzeni topologicznych) mających bardzo prostą strukturę; inne znaczenie odnosi się także do prostego aspektu technicznego dowodu lub definicji; oba znaczenia częstokroć opisuje się za pomocą przymiotnika trywialny, za jego synonim (choć niestosowany w matematyce) można uważać wyraz „banalny”.
    Pierścień przemienny – w teorii pierścieni, dziedzinie algebry abstrakcyjnej, pierścień w którym działanie mnożenia jest przemienne. Badaniem pierścieni przemiennych zajmuje się algebra przemienna. Często zakłada się dodatkowo istnienie w takim pierścieniu jedynki (elementu neutralnego mnożenia).
    Pierwiastkowanie – w matematyce operacja odwrotna względem potęgowania. Ponieważ często istnieje wiele liczb (tzw. pierwiastki algebraiczne), które podniesione do pewnej potęgi dają daną liczbę, to pierwiastkowanie nie może być w ogólności nazwane działaniem; często można jednak ograniczyć dziedzinę działania potęgowania tak, by możliwe było jego odwrócenie (dając tzw. pierwiastki arytmetyczne).

    Reklama

    Czas generowania strony: 0.033 sek.