• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Funkcja falowa



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Efekt Aharonova-Bohma (lub Efekt Ehrenberga-Sidaya-Aharonova-Bohma) to zjawisko kwantowo-mechaniczne, w którym naładowana cząstka odczuwa obecność pola elektromagnetycznego w obszarach, gdzie cząstki nie ma. Taki efekt pokazuje, że znajomość lokalnych pól nie wystarcza, by przewidzieć ewolucję układu kwantowego.Mechanika kwantowa (teoria kwantów) – teoria praw ruchu obiektów świata mikroskopowego. Poszerza zakres mechaniki na odległości czasoprzestrzenne i energie, dla których przewidywania mechaniki klasycznej nie sprawdzały się. Opisuje przede wszystkim obiekty o bardzo małych masach i rozmiarach - np. atom, cząstki elementarne itp. Jej granicą dla średnich rozmiarów lub średnich energii czy pędów jest mechanika klasyczna.

    Funkcja falowa - w mechanice kwantowej funkcja położenia układu cząstek w przestrzeni konfiguracyjnej i czasu , o wartościach zespolonych, będąca rozwiązaniem ogólnego równania Schrödingera. Funkcja ta opisuje stan kwantowy układu cząstek bezspinowych. Jej wartość dla danych wielkości nazywana jest amplitudą prawdopodobieństwa znalezienia układu w położeniu w chwili .

    Przestrzeń Hilberta – w analizie funkcjonalnej rzeczywista lub zespolona przestrzeń unitarna (tj. przestrzeń liniowa nad ciałem liczb rzeczywistych lub zespolonych z abstrakcyjnym iloczynem skalarnym), zupełna ze względu na indukowaną (poprzez normę) z iloczynu skalarnego tej przestrzeni metrykę. Jako unormowana i zupełna, każda przestrzeń Hilberta jest przestrzenią Banacha, a przez to przestrzenią Frécheta, a stąd lokalnie wypukłą przestrzenią liniowo-topologiczną. Przestrzenie te noszą nazwisko Davida Hilberta, który wprowadził je pod koniec XIX wieku; są one podstawowym narzędziem wykorzystywanym w wielu dziedzinach fizyki, m.in. w mechanice kwantowej (np. przestrzeń Foka nad przestrzenią Hilberta).Pojęcie liczby kwantowej pojawiło się w fizyce wraz z odkryciem mechaniki kwantowej. Okazało się, że właściwie wszystkie wielkości fizyczne mierzone w mikroświecie atomów i cząsteczek podlegają zjawisku kwantowania, tzn. mogą przyjmować tylko pewne ściśle określone wartości. Na przykład elektrony w atomie znajdują się na ściśle określonych orbitach i mogą znajdować się tylko tam, z dokładnością określoną przez zasadę nieoznaczoności. Z drugiej strony każdej orbicie odpowiada pewna energia. Bliższe badania pokazały, że w podobny sposób zachowują się także inne wielkości np. pęd, moment pędu czy moment magnetyczny (kwantowaniu podlega tu nie tylko wartość, ale i położenie wektora w przestrzeni albo jego rzutu na wybraną oś). Wobec takiego stanu rzeczy naturalnym pomysłem było po prostu ponumerowanie wszystkich możliwych wartości np. energii czy momentu pędu. Te numery to właśnie liczby kwantowe.

    W przypadku cząstek ze spinem funkcja falowa ma postać spinora.

    Spis treści

  • 1 Postulat Borna
  • 2 Faza funkcji falowej
  • 3 Wektor stanu w przestrzeni Hilberta
  • 4 Interpretacje znaczenia funkcji falowej
  • 5 Bibliografia
  • 6 Zobacz też


  • Podstrony: 1 [2] [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Operator Hamiltona (hamiltonian, operator energii) – w mechanice kwantowej odpowiednik funkcji Hamiltona zwanej hamiltonianem. Jest to operator działający nad przestrzenią funkcji falowych stanów układu fizycznego (lub nad przestrzenią Hilberta wektorów stanu). Wartością własną operatora Hamiltona jest energia cząstki opisywanej daną funkcją własną, natomiast wartością średnią operatora Hamiltona jest energia cząstki w danym stanie kwantowym. Matematycznie, operator Hamiltona jest obserwablą, a więc jest operatorem samosprzężonym.
    Przestrzeń konfiguracyjna to formalna, matematyczna przestrzeń będąca zbiorem możliwych stanów danego układu fizycznego. W zależności od rodzaju i liczby wyróżnionych parametrów stanu przestrzenie konfiguracyjne mogą mieć wiele wymiarów. Stany prostych układów dynamicznych opisuje się najczęściej jako zbiory punktów przestrzeni pędów bądź prędkości: np. stan kwantowego gazu elektronowego opisuje się przy użyciu przestrzeni prędkości z wyróżnioną kulą Fermiego zaś dynamikę punktu materialnego w polu sił (np. pole grawitacyjne) zewnętrznych za pomocą przestrzeni pędów.
    Spin – moment własny pędu cząstki w układzie, w którym nie wykonuje ruchu postępowego. Własny oznacza tu taki, który nie wynika z ruchu danej cząstki względem innych cząstek, lecz tylko z samej natury tej cząstki. Każdy rodzaj cząstek elementarnych ma odpowiedni dla siebie spin. Cząstki będące konglomeratami cząstek elementarnych (np. jądra atomów) mają również swój spin będący sumą wektorową spinów wchodzących w skład jego cząstek elementarnych.
    Liczby zespolone – liczby będące elementami rozszerzenia ciała liczb rzeczywistych o jednostkę urojoną i {displaystyle i} , tj. pierwiastek wielomianu x 2 + 1 {displaystyle x^{2}+1} .
    Prawdopodobieństwo – ogólne określenie jednego z wielu pojęć służących modelowaniu doświadczenia losowego poprzez przypisanie poszczególnym zdarzeniom losowym liczb, zwykle z przedziału jednostkowego (w zastosowaniach często wyrażanych procentowo), wskazujących szanse ich zajścia. W rozumieniu potocznym wyraz „prawdopodobieństwo” odnosi się do oczekiwania względem rezultatu zdarzenia, którego wynik nie jest znany (niezależnie od tego, czy jest ono w jakimś sensie zdeterminowane, miało miejsce w przeszłości, czy dopiero się wydarzy); w ogólności należy je rozumieć jako pewną miarę nieprzewidywalności.
    Obserwabla – w mechanice kwantowej wielkości fizyczne są reprezentowane przez operatory hermitowskie zwane obserwablami. Aby dany operator był obserwablą, jego wektory własne muszą tworzyć bazę przestrzeni Hilberta. Wartości własne operatora hermitowskiego są rzeczywiste. Podczas pomiaru danej wielkości fizycznej otrzymuje się jako wynik jedną z wartości własnych obserwabli przyporządkowanej danej wielkości fizycznej.
    Stan kwantowy — informacja o układzie kwantowym pozwalająca przewidzieć prawdopodobieństwa wyników wszystkich pomiarów, jakie można na tym układzie wykonać. Stan kwantowy jest jednym z podstawowych pojęć mechaniki kwantowej.

    Reklama