Euklides
Podstrony: 1 [2] [3] [4]
Przestrzeń euklidesowa – przestrzeń o geometrii euklidesowej. Jest ona naturalnym elementem modeli świata rzeczywistego (łac. geometria = mierzenie ziemi) i stanowi dobre przybliżenie przestrzeni fizycznych w warunkach makroskopowych, jednak nie nadaje się do opisu rzeczywistości w bardzo małych, atomowych, lub bardzo wielkich, astronomicznych, wielkościach. Jednowymiarowa przestrzeń euklidesowa nazywana jest prostą euklidesową, zaś dwuwymiarowa – płaszczyzną euklidesową. Przestrzenie te nazywa się również przestrzeniami afinicznymi euklidesowymi w odróżnieniu od przestrzeni liniowych euklidesowych, znanych szerzej jako przestrzenie unitarne.Widzenie przestrzenne jest sumą wielu czynników, wśród których widzenie dwuoczne odgrywa chyba najważniejszą rolę. Właśnie widzenie z dwóch punktów stanowi podstawę stereoskopii (zob. też widzenie stereoskopowe). Inne czynniki spotykamy w malarstwie: światłocień i perspektywę powietrzną. Oto siedem czynników, którym zawdzięczamy przestrzenne widzenie świata:
Euklides z Aleksandrii (starogr. Εὐκλείδης, Eukleides, ur. ok. 365 r. p.n.e., zm. ok. 270 r. p.n.e.) – matematyk grecki przez większość życia działający w Aleksandrii, autor Elementów (gr. Στοιχεῖα, Stoicheia), jednego z najsłynniejszych dzieł matematycznych w historii.
Życie[ | edytuj kod]
O życiu Euklidesa prawie nic nie wiadomo. Jego imię znane jest z tylko jednego źródła – z powstałego 7 stuleci później komentarza Proklosa do I księgi Elementów; inni określali go jako „autor Stoicheia”. Proklos stwierdził, że Euklides był trochę młodszy od uczniów Platona, a starszy od Eratostenesa i Archimedesa. Napisał też, że Euklides prawdopodobnie kształcił się w Atenach, bowiem ze szkoły Platona wyszła większość geometrów, od których jedynie mógł posiąść taką wiedzę.
Elementy Euklidesa[ | edytuj kod]
Głównym dziełem Euklidesa są Elementy. Było to aksjomatyczne ujęcie geometrii, które dotrwało w niezmienionej postaci jako kanon geometrii aż do XIX wieku (w niektórych krajach było używane jako podręcznik geometrii aż do XX wieku). Jak pisał Proklos, Euklides zebrał w całość i uporządkował (w księgach V i XII) wiele odkryć Eudoksosa z Knidos, uzupełnił wyniki Teajteta (w księgach X i XIII) oraz dostarczył niezbitych dowodów twierdzeń, które nie były przedtem ściśle uzasadnione przez jego poprzedników. Usystematyzował i nadał jednolitą postać podstawowej części ówczesnej wiedzy z geometrii płaskiej, przestrzennej i arytmetyki. To, że na początku każdej księgi podane są definicje, odpowiadało stanowisku Arystotelesa, że naukę dedukcyjną należy rozpoczynać od podania definicji i aksjomatów.
Proklos wyróżnił w Elementach konstrukcje i twierdzenia. Każda konstrukcja i każde twierdzenie przedstawione jest w sześciu krokach: (1) teza, (2) rysunek diagramu i ustalenie oznaczeń, (3) powtórzona teza z oznaczeniami, (4) zasadnicza część konstrukcji bądź dowodu, (5) uzasadnienie (tezy lub poprawności konstrukcji), (6) powtórzona teza (konstrukcje kończą się zwrotem: co było do wykonania, a twierdzenia zwrotem: co było do okazania).
Euklides starał się nadać swemu dziełu (zapewne pod wpływem Platona) charakter statyczny. W ukrytej formie pojawiają się tam jednak ruchy: przemieszczanie na płaszczyźnie, obroty przy kuli, walcu i stożku. W całym dziele widoczne jest też maksymalne dążenie do ścisłości. Jednakże zasady dedukcji określone zostały nie tylko przez podanie definicji i aksjomatów, ale też – w ukrytej formie – przez przykłady rozumowań, poczynając od pierwszej konstrukcji trójkąta równobocznego.
U Euklidesa nie było żadnej wersji aksjomatu ciągłości dla linii prostej, np. takiego jak u Dedekinda. Oryginalny system aksjomatyczny Euklidesa dopuszcza model przeliczalny w układzie kartezjańskim, gdy obie współrzędne każdego punktu należą do ciała pitagorejskiego, tj. najmniejszego zbioru liczb rzeczywistych zawierającego liczby wymierne, zamkniętego ze względu na cztery działania arytmetyczne i takiego, że jest w nim rozwiązalne każde równanie postaci przy jest to zbiór przeliczalny i da się rozwiązać każde równanie kwadratowe o współczynnikach z tego ciała, a więc w modelu tym wykonalne są wszystkie konstrukcje Euklidesa (dotyczące zawsze tylko prostych i okręgów).
W sposobie rozumowania Euklidesa prezentowanym w Elementach istotną rolę odgrywa specyficzne greckie użycie diagramów.
Podstrony: 1 [2] [3] [4]