• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Entropia topologiczna



    Podstrony: 1 [2] [3]
    Przeczytaj także...
    Chaos deterministyczny - w matematyce i fizyce, własność równań lub układów równań, polegająca na dużej wrażliwości rozwiązań na dowolnie małe zaburzenie parametrów. Dotyczy to zwykle nieliniowych równań różniczkowych i różnicowych, opisujących układy dynamiczne.Izometria (gr. isos – równy, métron – miara; także przekształcenie izometryczne, izomorfizm izometryczny) – funkcja zachowująca odległości między punktami przestrzeni metrycznej. W geometrii figury między którymi istnieje izometria (są izometryczne) nazywne są przystającymi.

    Entropia topologiczna reprezentuje wykładnicze tempo wzrostu liczby segmentów orbity układu dynamicznego odróżnianych z dowolnie dobrą, ale skończoną dokładnością. W tym sensie, entropia topologiczna opisuje w toporny ale sugestywny sposób całkowitą wykładniczą złożoność struktury orbity poprzez jedną tylko liczbę. Układy chaotyczne wyróżniają się posiadaniem dodatniej entropii, a sama entropia topologiczna jest niczym innym jak tempem wzrostu orbit okresowych. Zatem stosownie jest patrzeć na entropię jak na ilościową miarę chaosu w układzie dynamicznym.

    Niezmiennik topologiczny to wielkość, struktura lub cecha, która pozostaje niezmienna przy przekształceniach ciągłych. Przykładowo, jeśli rozważamy odwzorowanie okręgu w okrąg to okazuje się, że wszystkie możliwe odwzorowania można zaklasyfikować ze względu na liczbę nawinięć. Jest to liczba mówiąca ile razy należy obiec okrąg będący obrazem przekształcenia przy pojedynczym obiegu okręgu wyjściowego. Liczba ta jest stała i składając badane przekształcenie z dowolnym innym ciągłym przekształceniem nie można jej zmienić. Tym samym zbiór wszystkich ciągłych przekształceń okręgu rozpada się na rozłączne klasy przekształceń, które nawijają okrąg na siebie raz, dwa razy, trzy razy, itd. Struktura tego zbioru odpowiada zatem zbiorowi liczb naturalnych.Zbiór niezmienniczy układu dynamicznego ( X , f ) {displaystyle (X,f)} – każdy zbiór N ⊂ X {displaystyle Nsubset X} taki, że f ( N ) ⊂ N {displaystyle f(N)subset N} . Jeżeli zbiór niezmienniczy N {displaystyle N} jest dodatkowo domknięty, czyli gdy para ( N , f ↾ N ) {displaystyle (N,f_{upharpoonright N})} jest układem dynamicznym, to mówimy, że N {displaystyle N} jest podukładem ( X , f ) {displaystyle (X,f)} .

    Spis treści

  • 1 Metryka Bowena-Dinaburga
  • 2 Definicja entropii topologicznej
  • 3 Własności entropii topologicznej
  • 4 Przypisy


  • Podstrony: 1 [2] [3]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Układ dynamiczny – model matematyczny rzeczywistego zjawiska przyrody, którego ewolucja jest wyznaczona jednoznacznie przez stan początkowy; najczęściej jest opisany pewnym wektorowym równaniem różniczkowym (czyli w istocie układem równań różniczkowych zwyczajnych), zwanym równaniem stanu. Teoria układów dynamicznych stanowi ważny dział matematyki znajdujący liczne zastosowania przy opisie rozmaitych konkretnych zjawisk, m.in. w teorii sterowania. Układy złożone są najczęściej symulowane komputerowo.
    Homeomorfizm – jedno z fundamentalnych pojęć topologii. Intuicyjnie - przekształcenie, które dowolnie ściska, rozciąga, wygina lub skręca figurę, nie robi jednak w niej dziur, nie rozrywa jej ani nie skleja jej fragmentów. Inaczej mówiąc, przekształcenie to na ogół zmienia pierwotny kształt i rozmiar figury, zawsze jednak zachowuje potocznie rozumianą ciągłość i spoistość.

    Reklama

    Czas generowania strony: 0.025 sek.