Elipsoida obrotowa

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Elipsoida obrotowapowierzchnia lub bryła powstała na skutek obrotu elipsy wokół jej osi symetrii. W przypadku Ziemi osią tą jest mała oś elipsy, czyli oś ziemska.

MathWorld – encyklopedia matematyczna online, sponsorowana przez Wolfram Research, twórcę i producenta programu Mathematica; współsponsorem jest National Science Foundation (National Science Digital Library).Symetria osiowa (symetria względem osi) - odwzorowanie geometryczne płaszczyzny lub przestrzeni, które dla ustalonej osi tj. prostej l każdemu punktowi P swojej dziedziny przyporządkowuje punkt Q taki, że punkty P i Q wyznaczają prostą przecinającą prostopadle oś l i leżą w równej odległości od osi l po jej przeciwnych stronach.

Elipsoida obrotowa to taka elipsoida, której co najmniej dwie półosie mają równą długość. Szczególnym przypadkiem elipsoidy obrotowej jest sfera, co ma miejsce, gdy obracająca się elipsa ma równe półosie, tzn. jest okręgiem, czyli elipsoida ma wszystkie trzy półosie równej długości.

Elipsa – w geometrii ograniczony przypadek krzywej stożkowej, czyli krzywej będącej częścią wspólną powierzchni stożkowej oraz przecinającej ją płaszczyzny. Jest to również miejsce geometryczne wszystkich tych punktów płaszczyzny, dla których suma odległości od dwóch ustalonych punktów jest stałą.Elipsoida – powierzchnia, której wszystkie przekroje płaskie są elipsami. Czasem tym słowem oznacza się też bryłę, ograniczoną tą powierzchnią. Szczególnym przypadkiem elipsoidy jest elipsoida obrotowa, powierzchnia ograniczona powstała przez obrót elipsy wokół własnej osi symetrii.

Wzory i właściwości[ | edytuj kod]

Niech oznaczają długości osi, zorientowane tak, że gdzie a

Bryła geometryczna – zbiór punktów przestrzeni trójwymiarowej homeomorficzny z pewnym wielościanem. W innym ogólniejszym ujęciu jest to trójwymiarowa figura geometryczna.Ziemia (łac. Terra) − trzecia, licząc od Słońca, a piąta co do wielkości planeta Układu Słonecznego. Pod względem średnicy, masy i gęstości jest to największa planeta skalista Układu Słonecznego.
  • Pole powierzchni całkowitej bryły wynosi:
  • gdzie a to funkcja hipergeometryczna.

  • Objętość bryły wynosi:
  • Zobacz też[ | edytuj kod]

  • elipsoida
  • Przypisy[ | edytuj kod]

    1. Eric W. Weisstein, Spheroid, [w:] MathWorld [online], Wolfram Research (ang.).




    Reklama